
Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Taming the Wildcards
Combining Definition- and Use-Site Variance

John Altidor1, Shan Shan Huang2, and Yannis Smaragdakis1,3

University of Massachusetts Amherst1

LogicBlox Inc.2

University of Athens, Greece3

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 1/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Outline

I Motivation for Variance.

I Existing Approaches to Variance.

I Our Approach: Combine Def-Site and Use-Site Variance.

I Case Study and Results.

I Summary.

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 2/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Motivation
Variance Introduction

Motivation for Variance

I Generics have been added to mainstream languages (e.g.
Java, Scala, C#) to support parametric polymorphism.

I Generics conflict with subtyping.

I Dog <: Animal does not imply
List<Dog> <: List<Animal>.

List<Dog> ld = new ArrayList<Dog>();

List<Animal> la = ld;

la.add(new Cat());

Dog d = ld.get(0); // Assigning a Cat to a Dog!

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 3/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Motivation
Variance Introduction

Introduction to Variance

I Under what conditions for type expressions Exp1 and Exp2 is
C<Exp1 > a subtype of C<Exp2 >?

I Four common flavors of variance:

1. Covariance: T <: U =⇒ C<T> <: C<U>

2. Contravariance: T <: U =⇒ C<U> <: C<T>

3. Bivariance: C<T> <: C<U> for all T and U.
4. Invariance: C<T> <: C<U> =⇒ T <: U and U <: T .

I Existing specifications: Definition-Site and Use-Site Variance

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 4/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Definition-Site
Use-Site
Comparison

Definition-Site Variance

I As in Scala, the definition of generic class C[X] determines its
variance.

I Each type parameter is declared with a variance annotation.

I It is safe to assume RList[Dog] <: RList[Animal] and
Func[Real, String] <: Func[Int, Object].

I The variances of each type parameter’s positions should be at
most the declared variance.

class RList[+X] { def get(i:Int):X }

class Func[-K, +V] { def apply(k:K):V }

class WList[-X] { def set(i:Int, x:X):Unit }

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 5/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Definition-Site
Use-Site
Comparison

Use-Site Variance

I Clients declare desired variance at use-site.
I Java Wildcards.

I List<? extends T> - covariant instantiation
I List<? super T> - contravariant instantiation
I List<?> - bivariant instantiation
I List<T> - invariant instantiation

I List<? extends Animal> can call “Animal get(int i)” but
not “void set(int i, Animal a)”.

void mapSpeak(List<? extends Animal> animals) {

for(int i = 0; i < animals.size(); i++)

animals.get(i).speak();

}

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 6/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Definition-Site
Use-Site
Comparison

Definition-Site: Pros and Cons

I Conceptual simplicity; class definition specifies its variance.

I Burden on library designers; not on users.
I Forces splitting the definitions of data types into co-, contra-,

bi-, and invariant versions.
I scala.collection.immutable.Map[A, +B]

scala.collection.mutable.Map[A, B]
I A generic with n type parameters can require 3n interfaces (or

4n if bivariance is allowed).

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 7/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Definition-Site
Use-Site
Comparison

Use-Site: Pros and Cons

I Flexibility: co-, contra-, and bivariant versions on the fly.

I Design classes in natural way, but burden shifts to users.

I Type signatures quickly become complicated.

I Heavy variance annotations required for subtyping; from
Apache Commons-Collections Library:

Iterator<? extends Map.Entry<? extends K,V>>

createEntrySetIterator(

Iterator<? extends Map.Entry<? extends K,V>>)

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 8/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Lattice
Transform
Def-Site Inference

Our Approach: Combine Def-Site and Use-Site

I Take advantage of simplicity of def-site and flexibility of
use-site variance.

I Flexibility of use-site removes need for redundant classes.

I Simplicity of def-site takes complexity burden off clients, and
requires far fewer variance annotations for subtyping.

I Enable reasoning about classes with both def-site and use-site
annotations.

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 9/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Lattice
Transform
Def-Site Inference

Integrating Use-Site with Def-Site

class C[-X] { def set(arg1:X):Unit }

class D[+X] { def compare(arg2:C[+X]):Unit }

I C[+X] says to pass X to a version of C that is at least covariant.

I Use-site annotation corresponds to a join operation in the
standard variance lattice.



*

o

+

I Variance of X in C[vuX] is vc t vu, where vc is def-site var of C.

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 10/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Lattice
Transform
Def-Site Inference

Variance Composition

I What is variance of X in A<B<C<X>>>? (Ignore use-site)

I In general, what is variance of X in C<E>?

I Defined “transform” binary operator ⊗ to reason about
variance of arbitrarily nested type expressions.

I v1 ⊗ v2 = v3

If the variance of a type variable X in type expression E is v2

and the def-site variance of class C is v1, then the variance of
X in type expression C<E> is v3.

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 11/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Lattice
Transform
Def-Site Inference

Deriving Transform Operator

I Example Case +⊗− = −
Need to show C<E> is contravariant wrt X when generic C is
covariant in its type parameter and type expression E is
contravariant in X. This holds because, for any T1, T2:

T1 <: T2 =⇒ (by contravariance of E )

E [T2/X] <: E [T1/X] =⇒ (by covariance of C)

C<E [T2/X]> <: C<E [T1/X]> =⇒
C<E>[T2/X] <: C<E>[T1/X]

Hence, C<E> is contravariant with respect to X.

I See paper for remaining cases.

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 12/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Lattice
Transform
Def-Site Inference

Summary of Transform

I Invariance transforms everything into invariance.

I Bivariance transforms everything into bivariance.

I Covariance preserves a variance.

I Contravariance reverses it.

Definition of variance transformation: ⊗
+⊗+ = + −⊗+ = − ∗ ⊗+ = ∗ o ⊗+ = o
+⊗− = − −⊗− = + ∗ ⊗ − = ∗ o ⊗− = o

+⊗ ∗ = ∗ − ⊗ ∗ = ∗ ∗ ⊗ ∗ = ∗ o ⊗ ∗ = o
+⊗ o = o −⊗ o = o ∗ ⊗ o = ∗ o ⊗ o = o

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 13/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Lattice
Transform
Def-Site Inference

Def-Site Inference via Variance Calculus: VarLang

I Java Classes:

class C<X> {

X foo (C<? super X> csx) { ... }

void bar (D<? extends X> dsx) { ... }

}

class D<Y> { void baz (C<Y> cx) { ... } }

I Translation to VarLang :

module C<X> { X+, C<-X>-, void+, D<+X>- }

module D<Y> { void+, C<oY>- }

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 14/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Lattice
Transform
Def-Site Inference

Constraint Generation

module C<X> { X+, C<-X>-, void+, D<+X>- }

module D<Y> { void+, C<oY>- }

I Generate constraints from VarLang modules

foo return type =⇒ c v +⊗ +︸︷︷︸
X

= +

foo arg type =⇒ c v −⊗ (c t −)︸ ︷︷ ︸
C<-X>

bar arg type =⇒ c v −⊗ (d t+)︸ ︷︷ ︸
D<+X>

baz arg type =⇒ d v −⊗ (c t o)︸ ︷︷ ︸
C<oY>

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 15/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Lattice
Transform
Def-Site Inference

Constraints Enable Checking

class C<X> {

X foo (C<? super X> csx) { ... }

void bar (D<? extends X> dsx) { ... }

}

class D<Y> { void baz (C<Y> cx) { ... } }

I C cannot be contravariant.
I foo return type =⇒ c v + but − 6v +

I Constraints correspond to checking def-site variance
annotations.

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 16/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Lattice
Transform
Def-Site Inference

Constraint Solving Enables Inference

foo return type =⇒ c v +

foo arg type =⇒ c v −⊗ (c t −)

bar arg type =⇒ c v −⊗ (d t+)

baz arg type =⇒ d v −⊗ (c t o)

I Trivial solution: c = o and d = o.

I Most general solution: c = + and d = −.

I Solve constraints by fix-point computation running in
polynomial of the program size (# of constraints).

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 17/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Results
Summary

Case Study: Def-Site Inference for Java

I Mapped Java classes to VarLang modules.
I Argument types map to contravariant positions.
I Types of non-final fields map to covariant and contravariant.
I etc.

I Applied inference to large, standard Java libraries.

I Example inferences: java.util.Iterator<E> is covariant
and java.util.Comparator<T> is contravariant.

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 18/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Results
Summary

Sample Results from Inference

Library # Type # Gen Type Definitions
defs defs invar. variant

java.*
classes 5550 99 69% 31%
interfaces 1710 44 43% 57%
total 7260 143 61% 39%

JScience
classes 70 25 76% 24%
interfaces 51 11 55% 45%
total 121 36 69% 31%
classes 226 187 66% 34%

Apache interfaces 23 22 55% 45%
Collec. total 249 209 65% 35%

classes 204 101 90% 10%
Google interfaces 35 26 46% 54%
Guava total 239 127 81% 19%

I Analysis was modular but conservative (e.g. ignored method
bodies).

I “foo(List<Animal> arg)” could have been
“foo(List<? extends Animal> arg)”.

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 19/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Results
Summary

Summary

I Combine def-site and use-site variance to reap their
advantages and remove their disadvantages.

I Our reasoning enables adding def-site variance inference to
Java and checking Scala classes with use-site variance
annotations.

I Analysis over Java libraries shows potential impact even with
a conservative analysis.

I See PLDI 2011 paper for further details.

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 20/ 20


	Introduction
	Motivation
	Variance Introduction

	Existing Approaches
	Definition-Site
	Use-Site
	Comparison

	Combine Def-Site and Use-Site
	Lattice
	Transform
	Def-Site Inference

	Case Study
	Results
	Summary


