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I Motivation for Variance.

I Existing Approaches to Variance.

I Our Approach: Combine Def-Site and Use-Site Variance.
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Motivation for Variance

I Generics have been added to mainstream languages (e.g.
Java, Scala, C#) to support parametric polymorphism.

I Generics conflict with subtyping.

I Dog <: Animal does not imply
List<Dog> <: List<Animal>.

List<Dog> ld = new ArrayList<Dog>();

List<Animal> la = ld;

la.add(new Cat());

Dog d = ld.get(0); // Assigning a Cat to a Dog!
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Introduction to Variance

I Under what conditions for type expressions Exp1 and Exp2 is
C<Exp1 > a subtype of C<Exp2 >?

I Four common flavors of variance:

1. Covariance: T <: U =⇒ C<T> <: C<U>

2. Contravariance: T <: U =⇒ C<U> <: C<T>

3. Bivariance: C<T> <: C<U> for all T and U.
4. Invariance: C<T> <: C<U> =⇒ T <: U and U <: T .

I Existing specifications: Definition-Site and Use-Site Variance
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Definition-Site Variance

I As in Scala, the definition of generic class C[X] determines its
variance.

I Each type parameter is declared with a variance annotation.

I It is safe to assume RList[Dog] <: RList[Animal] and
Func[Real, String] <: Func[Int, Object].

I The variances of each type parameter’s positions should be at
most the declared variance.

class RList[+X] { def get(i:Int):X }

class Func[-K, +V] { def apply(k:K):V }

class WList[-X] { def set(i:Int, x:X):Unit }
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Use-Site Variance

I Clients declare desired variance at use-site.
I Java Wildcards.

I List<? extends T> - covariant instantiation
I List<? super T> - contravariant instantiation
I List<?> - bivariant instantiation
I List<T> - invariant instantiation

I List<? extends Animal> can call “Animal get(int i)” but
not “void set(int i, Animal a)”.

void mapSpeak(List<? extends Animal> animals) {

for(int i = 0; i < animals.size(); i++)

animals.get(i).speak();

}
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Definition-Site: Pros and Cons

I Conceptual simplicity; class definition specifies its variance.

I Burden on library designers; not on users.
I Forces splitting the definitions of data types into co-, contra-,

bi-, and invariant versions.
I scala.collection.immutable.Map[A, +B]

scala.collection.mutable.Map[A, B]
I A generic with n type parameters can require 3n interfaces (or

4n if bivariance is allowed).
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Use-Site: Pros and Cons

I Flexibility: co-, contra-, and bivariant versions on the fly.

I Design classes in natural way, but burden shifts to users.

I Type signatures quickly become complicated.

I Heavy variance annotations required for subtyping; from
Apache Commons-Collections Library:

Iterator<? extends Map.Entry<? extends K,V>>

createEntrySetIterator(

Iterator<? extends Map.Entry<? extends K,V>>)

John Altidor, Shan Shan Huang, and Yannis Smaragdakis Taming the Wildcards 8/ 20



Introduction
Existing Approaches

Combine Def-Site and Use-Site
Case Study

Lattice
Transform
Def-Site Inference

Our Approach: Combine Def-Site and Use-Site

I Take advantage of simplicity of def-site and flexibility of
use-site variance.

I Flexibility of use-site removes need for redundant classes.

I Simplicity of def-site takes complexity burden off clients, and
requires far fewer variance annotations for subtyping.

I Enable reasoning about classes with both def-site and use-site
annotations.
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Integrating Use-Site with Def-Site

class C[-X] { def set(arg1:X):Unit }

class D[+X] { def compare(arg2:C[+X]):Unit }

I C[+X] says to pass X to a version of C that is at least covariant.

I Use-site annotation corresponds to a join operation in the
standard variance lattice.



*

o

+

I Variance of X in C[vuX] is vc t vu, where vc is def-site var of C.
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Variance Composition

I What is variance of X in A<B<C<X>>>? (Ignore use-site)

I In general, what is variance of X in C<E>?

I Defined “transform” binary operator ⊗ to reason about
variance of arbitrarily nested type expressions.

I v1 ⊗ v2 = v3

If the variance of a type variable X in type expression E is v2

and the def-site variance of class C is v1, then the variance of
X in type expression C<E> is v3.
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Deriving Transform Operator

I Example Case +⊗− = −
Need to show C<E> is contravariant wrt X when generic C is
covariant in its type parameter and type expression E is
contravariant in X. This holds because, for any T1, T2:

T1 <: T2 =⇒ (by contravariance of E )

E [T2/X] <: E [T1/X] =⇒ (by covariance of C)

C<E [T2/X]> <: C<E [T1/X]> =⇒
C<E>[T2/X] <: C<E>[T1/X]

Hence, C<E> is contravariant with respect to X.

I See paper for remaining cases.
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Summary of Transform

I Invariance transforms everything into invariance.

I Bivariance transforms everything into bivariance.

I Covariance preserves a variance.

I Contravariance reverses it.

Definition of variance transformation: ⊗
+⊗+ = + −⊗+ = − ∗ ⊗+ = ∗ o ⊗+ = o
+⊗− = − −⊗− = + ∗ ⊗ − = ∗ o ⊗− = o

+⊗ ∗ = ∗ − ⊗ ∗ = ∗ ∗ ⊗ ∗ = ∗ o ⊗ ∗ = o
+⊗ o = o −⊗ o = o ∗ ⊗ o = ∗ o ⊗ o = o
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Def-Site Inference via Variance Calculus: VarLang

I Java Classes:

class C<X> {

X foo (C<? super X> csx) { ... }

void bar (D<? extends X> dsx) { ... }

}

class D<Y> { void baz (C<Y> cx) { ... } }

I Translation to VarLang :

module C<X> { X+, C<-X>-, void+, D<+X>- }

module D<Y> { void+, C<oY>- }
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Constraint Generation

module C<X> { X+, C<-X>-, void+, D<+X>- }

module D<Y> { void+, C<oY>- }

I Generate constraints from VarLang modules

foo return type =⇒ c v +⊗ +︸︷︷︸
X

= +

foo arg type =⇒ c v −⊗ (c t −)︸ ︷︷ ︸
C<-X>

bar arg type =⇒ c v −⊗ (d t+)︸ ︷︷ ︸
D<+X>

baz arg type =⇒ d v −⊗ (c t o)︸ ︷︷ ︸
C<oY>
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Constraints Enable Checking

class C<X> {

X foo (C<? super X> csx) { ... }

void bar (D<? extends X> dsx) { ... }

}

class D<Y> { void baz (C<Y> cx) { ... } }

I C cannot be contravariant.
I foo return type =⇒ c v + but − 6v +

I Constraints correspond to checking def-site variance
annotations.
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Constraint Solving Enables Inference

foo return type =⇒ c v +

foo arg type =⇒ c v −⊗ (c t −)

bar arg type =⇒ c v −⊗ (d t+)

baz arg type =⇒ d v −⊗ (c t o)

I Trivial solution: c = o and d = o.

I Most general solution: c = + and d = −.

I Solve constraints by fix-point computation running in
polynomial of the program size (# of constraints).
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Case Study: Def-Site Inference for Java

I Mapped Java classes to VarLang modules.
I Argument types map to contravariant positions.
I Types of non-final fields map to covariant and contravariant.
I etc.

I Applied inference to large, standard Java libraries.

I Example inferences: java.util.Iterator<E> is covariant
and java.util.Comparator<T> is contravariant.
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Sample Results from Inference

Library # Type # Gen Type Definitions
defs defs invar. variant

java.*
classes 5550 99 69% 31%
interfaces 1710 44 43% 57%
total 7260 143 61% 39%

JScience
classes 70 25 76% 24%
interfaces 51 11 55% 45%
total 121 36 69% 31%
classes 226 187 66% 34%

Apache interfaces 23 22 55% 45%
Collec. total 249 209 65% 35%

classes 204 101 90% 10%
Google interfaces 35 26 46% 54%
Guava total 239 127 81% 19%

I Analysis was modular but conservative (e.g. ignored method
bodies).

I “foo(List<Animal> arg)” could have been
“foo(List<? extends Animal> arg)”.
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Summary

I Combine def-site and use-site variance to reap their
advantages and remove their disadvantages.

I Our reasoning enables adding def-site variance inference to
Java and checking Scala classes with use-site variance
annotations.

I Analysis over Java libraries shows potential impact even with
a conservative analysis.

I See PLDI 2011 paper for further details.
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