
Type Theory Tutorial

John Altidor

Logic Seminar Lecture

John Altidor Type Theory Tutorial 1/ 24



Outline

Brief Motivation for Type Systems.

Example Type System/Programming Language (PL).
I Presenting MiniLang : A simple programming language of

numbers and strings.
I Syntax
I Static Semantics (Type Checking)
I Dynamic (Operational) Semantics (Evaluation)
I Safety Theorems: Preservation + Progress

Twelf Tutorial
I Mechanization of Minilang

John Altidor Type Theory Tutorial 2/ 24



Create Language vs Create Library

Library Pros:
I Library allows using existing language infrastructure
I Smaller learning curve

- Don’t need to learn new language constructs.

Library Cons:
I Errors difficult to detect and debug w/o a compiler.

I Programs can enter undefined states
(e.g. segmentation fault from reading a non-existing field).

I Requirements not checked in the language of the library.
I Leaking confidential information to unauthorized users.

John Altidor Type Theory Tutorial 3/ 24



Create Language vs Create Library

Library Pros:
I Library allows using existing language infrastructure

I Smaller learning curve
- Don’t need to learn new language constructs.

Library Cons:
I Errors difficult to detect and debug w/o a compiler.

I Programs can enter undefined states
(e.g. segmentation fault from reading a non-existing field).

I Requirements not checked in the language of the library.
I Leaking confidential information to unauthorized users.

John Altidor Type Theory Tutorial 3/ 24



Create Language vs Create Library

Library Pros:
I Library allows using existing language infrastructure
I Smaller learning curve

- Don’t need to learn new language constructs.

Library Cons:
I Errors difficult to detect and debug w/o a compiler.

I Programs can enter undefined states
(e.g. segmentation fault from reading a non-existing field).

I Requirements not checked in the language of the library.
I Leaking confidential information to unauthorized users.

John Altidor Type Theory Tutorial 3/ 24



Create Language vs Create Library

Library Pros:
I Library allows using existing language infrastructure
I Smaller learning curve

- Don’t need to learn new language constructs.

Library Cons:
I Errors difficult to detect and debug w/o a compiler.

I Programs can enter undefined states
(e.g. segmentation fault from reading a non-existing field).

I Requirements not checked in the language of the library.
I Leaking confidential information to unauthorized users.

John Altidor Type Theory Tutorial 3/ 24



Create Language vs Create Library

Library Pros:
I Library allows using existing language infrastructure
I Smaller learning curve

- Don’t need to learn new language constructs.

Library Cons:
I Errors difficult to detect and debug w/o a compiler.

I Programs can enter undefined states
(e.g. segmentation fault from reading a non-existing field).

I Requirements not checked in the language of the library.
I Leaking confidential information to unauthorized users.

John Altidor Type Theory Tutorial 3/ 24



Type Systems

Type System = Formally defined language (calculus) with
types.

Types = Properties/classification over terms (syntax) of a
language.

Precisely defining what a language means
I Which programs are allowed in a language?
I How does a program execute?
I . . .

Enables proving properties about a language.
I Program is always in a well-defined state throughout execution

(no segmentation fault).
I Can prove properties related to software requirements (e.g.

information flow).

Compiler informs programmers of errors at compile-time.

Best explained with an example: MiniLang

John Altidor Type Theory Tutorial 4/ 24



Type Systems

Type System = Formally defined language (calculus) with
types.

Types = Properties/classification over terms (syntax) of a
language.

Precisely defining what a language means
I Which programs are allowed in a language?
I How does a program execute?
I . . .

Enables proving properties about a language.
I Program is always in a well-defined state throughout execution

(no segmentation fault).
I Can prove properties related to software requirements (e.g.

information flow).

Compiler informs programmers of errors at compile-time.

Best explained with an example: MiniLang

John Altidor Type Theory Tutorial 4/ 24



Type Systems

Type System = Formally defined language (calculus) with
types.

Types = Properties/classification over terms (syntax) of a
language.

Precisely defining what a language means
I Which programs are allowed in a language?
I How does a program execute?
I . . .

Enables proving properties about a language.
I Program is always in a well-defined state throughout execution

(no segmentation fault).
I Can prove properties related to software requirements (e.g.

information flow).

Compiler informs programmers of errors at compile-time.

Best explained with an example: MiniLang

John Altidor Type Theory Tutorial 4/ 24



Type Systems

Type System = Formally defined language (calculus) with
types.

Types = Properties/classification over terms (syntax) of a
language.

Precisely defining what a language means
I Which programs are allowed in a language?
I How does a program execute?
I . . .

Enables proving properties about a language.
I Program is always in a well-defined state throughout execution

(no segmentation fault).
I Can prove properties related to software requirements (e.g.

information flow).

Compiler informs programmers of errors at compile-time.

Best explained with an example: MiniLang

John Altidor Type Theory Tutorial 4/ 24



Type Systems

Type System = Formally defined language (calculus) with
types.

Types = Properties/classification over terms (syntax) of a
language.

Precisely defining what a language means
I Which programs are allowed in a language?
I How does a program execute?
I . . .

Enables proving properties about a language.
I Program is always in a well-defined state throughout execution

(no segmentation fault).
I Can prove properties related to software requirements (e.g.

information flow).

Compiler informs programmers of errors at compile-time.

Best explained with an example: MiniLang

John Altidor Type Theory Tutorial 4/ 24



MiniLang Syntax

Concrete syntax is what humans write.

Abstract syntax is what computers reason over.

Category Item Abstract Concrete

Expression e : : = x x
| num[n] n
| str[s] ’s’

| +(e1; e2) e1 + e2
| ^(e1; e2) e1 ^ e2
| let(x; e1; e2) let x be e1 in e2

John Altidor Type Theory Tutorial 5/ 24



Example Expressions

Abstract Concrete

+(num[5]; +(num[4]; num[3])) 5 + 4 + 3

^(str[john]; ^(x; str[doe])) ’john’ ^ x ^ ’doe’

let(hours; num[24]; let hours be 24 in hours+24

+(hours; num[3])

John Altidor Type Theory Tutorial 6/ 24



Inference Rules

Semantics of terms (ASTs) defined w/ inference rules.

Rules have the following form.

premises︷ ︸︸ ︷
J1 J2 . . . Jn

J︸︷︷︸
conclusion

Rule Label

No premises means axiom.

John Altidor Type Theory Tutorial 7/ 24



Static Semantics (Type Checking Rules)

Γ ` num[n]: num
T.1

Γ ` str[s]: str
T.2

(x , τ) ∈ Γ

Γ ` x : τ
T.3

Γ ` e1: num Γ ` e2: num

Γ ` +(e1; e2): num
T.4

Γ ` e1: str Γ ` e2: str

Γ ` ^(e1; e2): str
T.5

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2
Γ ` let(x; e1; e2): τ2

T.6

John Altidor Type Theory Tutorial 8/ 24



Example Type Derivation

` num[24]: num
T.1

hrs:num ` hrs: num
T.3

hrs:num ` num[3]: num
T.1

hrs:num ` +(hrs; num[3]): num
T.4

` let(hrs; num[24]; +(hrs; num[3]): num
T.6

John Altidor Type Theory Tutorial 9/ 24



Example Type Check Failure

` num[24]: num
T.1

hrs:num ` hours: num
T.3

hrs:num ` str[abc]: str
T.1

hrs:num ` +(hours; str[abc]): Fail

` let(hrs; num[24]; +(hrs; str[abc])

John Altidor Type Theory Tutorial 10/ 24



Dynamic (Operational) Semantics (Evaluation)

Defining how to “execute” expressions in MiniLang .

Specifically, defining a transition system/relation 7→
between expressions to evaluate them to values.

First, need to define values:

num[n] value str[s] value

John Altidor Type Theory Tutorial 11/ 24



Dynamic Semantics – Numerical Addition

e1 7→ e ′1
+(e1; e2) 7→ +(e′1; e2)

D.1

e2 7→ e ′2
+(num[n1]; e2) 7→ +(num[n1]; e′2)

D.2

n1 + n2 = n3
+(num[n1]; num[n2]) 7→ num[n3]

D.3

John Altidor Type Theory Tutorial 12/ 24



Dynamic Semantics – String Concatenation

e1 7→ e ′1
^(e1; e2) 7→ ^(e′1; e2)

D.4

e2 7→ e ′2
^(str[s1]; e2) 7→ ^(str[s1]; e′2)

D.5

s1^s2 = s3
^(str[s1]; str[s2]) 7→ str[s3]

D.6

John Altidor Type Theory Tutorial 13/ 24



Dynamic Semantics – Let Expressions

e1 7→ e ′1
let(x; e1; e2) 7→ let(x; e′1; e2)

D.7

e1 value

let(x; e1; e2) 7→ [e1/x ]e2
D.8

John Altidor Type Theory Tutorial 14/ 24



Safety Theorem – Preservation

If e is a well-typed expression that is not a value, then
performing an evaluation step on e does not change its type.

Formally, if e : τ and e 7→ e ′, then e ′ : τ .

Relates the compile-time analysis (type checking rules) with
the run-time behavior (evaluation rules).

Important property for real programming langauges.

John Altidor Type Theory Tutorial 15/ 24



Safety Theorem – Preservation

If e is a well-typed expression that is not a value, then
performing an evaluation step on e does not change its type.

Formally, if e : τ and e 7→ e ′, then e ′ : τ .

Relates the compile-time analysis (type checking rules) with
the run-time behavior (evaluation rules).

Important property for real programming langauges.

John Altidor Type Theory Tutorial 15/ 24



Preservation Motivation

What if Java did not preserve types during evaluation?

int x; // 4 bytes in Java

double y; // 8 bytes in Java

x = x + 8︸ ︷︷ ︸
What if this evaluated to a double?

John Altidor Type Theory Tutorial 16/ 24



Preservation Proof – Addition Case 1

Proof by induction on the possible typing and evaluation
combinations.
Case: (T.4, D.3)

num[n1]: num num[n2]: num

+(num[n1]; num[n2]): num
T.4

n1 + n2 = n3
+(num[n1]; num[n2]) 7→ num[n3]

D.3

Using rule T.1:

num[n3]: num
T.1

John Altidor Type Theory Tutorial 17/ 24



Preservation Proof – Addition Case 2

Case: (T.4, D.1)

e1: num e2: num

+(e1; e2): num
T.4

e1 7→ e ′1
+(e1; e2) 7→ +(e′1; e2)

D.1

We assume preservation holds for subexpressions. Hence, by the
inductive hypothesis, e1: num and e1 7→ e ′1 implies e ′1: num.
Rule T.4 gives us:

e′1: num e2: num

+(e′1; e2): num
T.4

John Altidor Type Theory Tutorial 18/ 24



Preservation Proof – Addition Case 3

Case: (T.4, D.2)

num[n1]: num e2: num

+(num[n1]; e2): num
T.4

e2 7→ e ′2
+(num[n1]; e2) 7→ +(num[n1]; e′2)

D.2

Since e2: num and e2 7→ e ′2, by the inductive hypothesis, e ′2:
num.
Rule T.4 gives us:

num[n1]: num
T.1

e′2: num

+(num[n1]; e′2): num
T.4

John Altidor Type Theory Tutorial 19/ 24



Preservation Proof – Remaining Cases

Remaining cases in preservation proof apply similar reasoning.

We show one more case involving a common lemma.

John Altidor Type Theory Tutorial 20/ 24



Substitution Lemma

For a case in the preservation proof, we need the
Substitution Lemma:

In words, we can substitute subexpressions that are of the
same type in an expression e without changing the type of e.

Formally:
If Γ ` e ′ : τ ′ and Γ, y : τ ′ ` e : τ , then Γ ` [e ′/y ]e : τ .

Proof of this lemma by induction on the structure of e.

John Altidor Type Theory Tutorial 21/ 24



Substitution Lemma

For a case in the preservation proof, we need the
Substitution Lemma:

In words, we can substitute subexpressions that are of the
same type in an expression e without changing the type of e.

Formally:
If Γ ` e ′ : τ ′ and Γ, y : τ ′ ` e : τ , then Γ ` [e ′/y ]e : τ .

Proof of this lemma by induction on the structure of e.

John Altidor Type Theory Tutorial 21/ 24



Preservation Proof – Let Case

Case: (T.6, D.8)

e1 : τ1 x : τ1 ` e2 : τ2
let(x ; e1; e2): τ2

T.6

e1 value
let(x; e1; e2) 7→ [e1/x ]e2

D.8

Since e1 : τ1 and x : τ1 ` e2 : τ2, by substitution lemma, we have
[e1/x ]e2 : τ2.
We have completed the proof of preservation!

John Altidor Type Theory Tutorial 22/ 24



Type Safety

Preservation + Progress = Type Safety
I Progress theorem and proof presented in them paper.

Type safety ensure program behavior is well-defined
throughout its execution.

Proving language properties are important (e.g. ruling out
certain errors, publishing).

But proofs are long, error prone, and difficult to validate.

Automated support for deriving proofs and checking proofs
of language properties.

I Twelf, Coq, Isabelle, Agda, . . .

John Altidor Type Theory Tutorial 23/ 24



Type Safety

Preservation + Progress = Type Safety
I Progress theorem and proof presented in them paper.

Type safety ensure program behavior is well-defined
throughout its execution.

Proving language properties are important (e.g. ruling out
certain errors, publishing).

But proofs are long, error prone, and difficult to validate.

Automated support for deriving proofs and checking proofs
of language properties.

I Twelf, Coq, Isabelle, Agda, . . .

John Altidor Type Theory Tutorial 23/ 24



Type Safety

Preservation + Progress = Type Safety
I Progress theorem and proof presented in them paper.

Type safety ensure program behavior is well-defined
throughout its execution.

Proving language properties are important (e.g. ruling out
certain errors, publishing).

But proofs are long, error prone, and difficult to validate.

Automated support for deriving proofs and checking proofs
of language properties.

I Twelf, Coq, Isabelle, Agda, . . .

John Altidor Type Theory Tutorial 23/ 24



Type Safety

Preservation + Progress = Type Safety
I Progress theorem and proof presented in them paper.

Type safety ensure program behavior is well-defined
throughout its execution.

Proving language properties are important (e.g. ruling out
certain errors, publishing).

But proofs are long, error prone, and difficult to validate.

Automated support for deriving proofs and checking proofs
of language properties.

I Twelf, Coq, Isabelle, Agda, . . .

John Altidor Type Theory Tutorial 23/ 24



Summary

Programming languages can be defined using formal
mathematical specification.

I Which programs are allowed.
I How a program executes.

Formal specification enables proving language properties.

Type system = formally defined language with types.

Type safety theorems (e.g. preservation) establish relationship
between compile-time analysis and run-time behavior.

John Altidor Type Theory Tutorial 24/ 24


	Introduction
	Motivation
	Type Systems
	Syntax
	Inference Rules
	Type Checking
	Evaluation
	Preservation Theorem
	Preservation Motivation
	Preservation Proof
	Substitution
	Type Safety

