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Outline

Brief Motivation for Type Systems.

Example Type System/Programming Language (PL).
I Presenting MiniLang : A simple programming language of

numbers and strings.
I Syntax
I Static Semantics (Type Checking)
I Dynamic (Operational) Semantics (Evaluation)
I Safety Theorems: Preservation + Progress

Twelf Tutorial
I Mechanization of Minilang
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Create Language vs Create Library

Library Pros:
I Library allows using existing language infrastructure
I Smaller learning curve

- Don’t need to learn new language constructs.

Library Cons:
I Errors difficult to detect and debug w/o a compiler.

I Programs can enter undefined states
(e.g. segmentation fault from reading a non-existing field).

I Requirements not checked in the language of the library.
I Leaking confidential information to unauthorized users.
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Type Systems

Type System = Formally defined language (calculus) with
types.

Types = Properties/classification over terms (syntax) of a
language.

Precisely defining what a language means
I Which programs are allowed in a language?
I How does a program execute?
I . . .

Enables proving properties about a language.
I Program is always in a well-defined state throughout execution

(no segmentation fault).
I Can prove properties related to software requirements (e.g.

information flow).

Compiler informs programmers of errors at compile-time.

Best explained with an example: MiniLang
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MiniLang Syntax

Concrete syntax is what humans write.

Abstract syntax is what computers reason over.

Category Item Abstract Concrete

Expression e : : = x x
| num[n] n
| str[s] ’s’

| +(e1; e2) e1 + e2
| ^(e1; e2) e1 ^ e2
| let(x; e1; e2) let x be e1 in e2
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Example Expressions

Abstract Concrete

+(num[5]; +(num[4]; num[3])) 5 + 4 + 3

^(str[john]; ^(x; str[doe])) ’john’ ^ x ^ ’doe’

let(hours; num[24]; let hours be 24 in hours+24

+(hours; num[3])
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Inference Rules

Semantics of terms (ASTs) defined w/ inference rules.

Rules have the following form.

premises︷ ︸︸ ︷
J1 J2 . . . Jn

J︸︷︷︸
conclusion

Rule Label

No premises means axiom.
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Static Semantics (Type Checking Rules)

Γ ` num[n]: num
T.1

Γ ` str[s]: str
T.2

(x , τ) ∈ Γ

Γ ` x : τ
T.3

Γ ` e1: num Γ ` e2: num

Γ ` +(e1; e2): num
T.4

Γ ` e1: str Γ ` e2: str

Γ ` ^(e1; e2): str
T.5

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2
Γ ` let(x; e1; e2): τ2

T.6
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Example Type Derivation

` num[24]: num
T.1

hrs:num ` hrs: num
T.3

hrs:num ` num[3]: num
T.1

hrs:num ` +(hrs; num[3]): num
T.4

` let(hrs; num[24]; +(hrs; num[3]): num
T.6
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Example Type Check Failure

` num[24]: num
T.1

hrs:num ` hours: num
T.3

hrs:num ` str[abc]: str
T.1

hrs:num ` +(hours; str[abc]): Fail

` let(hrs; num[24]; +(hrs; str[abc])
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Dynamic (Operational) Semantics (Evaluation)

Defining how to “execute” expressions in MiniLang .

Specifically, defining a transition system/relation 7→
between expressions to evaluate them to values.

First, need to define values:

num[n] value str[s] value
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Dynamic Semantics – Numerical Addition

e1 7→ e ′1
+(e1; e2) 7→ +(e′1; e2)

D.1

e2 7→ e ′2
+(num[n1]; e2) 7→ +(num[n1]; e′2)

D.2

n1 + n2 = n3
+(num[n1]; num[n2]) 7→ num[n3]

D.3
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Dynamic Semantics – String Concatenation

e1 7→ e ′1
^(e1; e2) 7→ ^(e′1; e2)

D.4

e2 7→ e ′2
^(str[s1]; e2) 7→ ^(str[s1]; e′2)

D.5

s1^s2 = s3
^(str[s1]; str[s2]) 7→ str[s3]

D.6
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Dynamic Semantics – Let Expressions

e1 7→ e ′1
let(x; e1; e2) 7→ let(x; e′1; e2)

D.7

e1 value

let(x; e1; e2) 7→ [e1/x ]e2
D.8
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Safety Theorem – Preservation

If e is a well-typed expression that is not a value, then
performing an evaluation step on e does not change its type.

Formally, if e : τ and e 7→ e ′, then e ′ : τ .

Relates the compile-time analysis (type checking rules) with
the run-time behavior (evaluation rules).

Important property for real programming langauges.
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Preservation Motivation

What if Java did not preserve types during evaluation?

int x; // 4 bytes in Java

double y; // 8 bytes in Java

x = x + 8︸ ︷︷ ︸
What if this evaluated to a double?
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Preservation Proof – Addition Case 1

Proof by induction on the possible typing and evaluation
combinations.
Case: (T.4, D.3)

num[n1]: num num[n2]: num

+(num[n1]; num[n2]): num
T.4

n1 + n2 = n3
+(num[n1]; num[n2]) 7→ num[n3]

D.3

Using rule T.1:

num[n3]: num
T.1
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Preservation Proof – Addition Case 2

Case: (T.4, D.1)

e1: num e2: num

+(e1; e2): num
T.4

e1 7→ e ′1
+(e1; e2) 7→ +(e′1; e2)

D.1

We assume preservation holds for subexpressions. Hence, by the
inductive hypothesis, e1: num and e1 7→ e ′1 implies e ′1: num.
Rule T.4 gives us:

e′1: num e2: num

+(e′1; e2): num
T.4
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Preservation Proof – Addition Case 3

Case: (T.4, D.2)

num[n1]: num e2: num

+(num[n1]; e2): num
T.4

e2 7→ e ′2
+(num[n1]; e2) 7→ +(num[n1]; e′2)

D.2

Since e2: num and e2 7→ e ′2, by the inductive hypothesis, e ′2:
num.
Rule T.4 gives us:

num[n1]: num
T.1

e′2: num

+(num[n1]; e′2): num
T.4
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Preservation Proof – Remaining Cases

Remaining cases in preservation proof apply similar reasoning.

We show one more case involving a common lemma.
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Substitution Lemma

For a case in the preservation proof, we need the
Substitution Lemma:

In words, we can substitute subexpressions that are of the
same type in an expression e without changing the type of e.

Formally:
If Γ ` e ′ : τ ′ and Γ, y : τ ′ ` e : τ , then Γ ` [e ′/y ]e : τ .

Proof of this lemma by induction on the structure of e.
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Preservation Proof – Let Case

Case: (T.6, D.8)

e1 : τ1 x : τ1 ` e2 : τ2
let(x ; e1; e2): τ2

T.6

e1 value
let(x; e1; e2) 7→ [e1/x ]e2

D.8

Since e1 : τ1 and x : τ1 ` e2 : τ2, by substitution lemma, we have
[e1/x ]e2 : τ2.
We have completed the proof of preservation!
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Type Safety

Preservation + Progress = Type Safety
I Progress theorem and proof presented in them paper.

Type safety ensure program behavior is well-defined
throughout its execution.

Proving language properties are important (e.g. ruling out
certain errors, publishing).

But proofs are long, error prone, and difficult to validate.

Automated support for deriving proofs and checking proofs
of language properties.

I Twelf, Coq, Isabelle, Agda, . . .
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Summary

Programming languages can be defined using formal
mathematical specification.

I Which programs are allowed.
I How a program executes.

Formal specification enables proving language properties.

Type system = formally defined language with types.

Type safety theorems (e.g. preservation) establish relationship
between compile-time analysis and run-time behavior.
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