Type Theory Tutorial

John Altidor

Logic Seminar Lecture

John Altidor Type Theory Tutorial 1/ 24

m Brief Motivation for Type Systems.
m Example Type System/Programming Language (PL).
» Presenting MiniLang: A simple programming language of
numbers and strings.
Syntax
Static Semantics (Type Checking)
Dynamic (Operational) Semantics (Evaluation)
Safety Theorems: Preservation + Progress
m Twelf Tutorial
» Mechanization of Minilang

vV vy VvVvYy

John Altidor Type Theory Tutorial 2/ 24

Create Language vs Create Library

John Altidor Type Theory Tutorial 3/ 24

Create Language vs Create Library

m Library Pros:
» Library allows using existing language infrastructure

John Altidor Type Theory Tutorial 3/ 24

Create Language vs Create Library

m Library Pros:

» Library allows using existing language infrastructure
» Smaller learning curve
- Don't need to learn new language constructs.

John Altidor Type Theory Tutorial 3/ 24

Create Language vs Create Library

m Library Pros:
» Library allows using existing language infrastructure
» Smaller learning curve
- Don't need to learn new language constructs.
m Library Cons:
» Errors difficult to detect and debug w/o a compiler.

> Programs can enter undefined states
(e.g. segmentation fault from reading a non-existing field).

John Altidor Type Theory Tutorial 3/ 24

Create Language vs Create Library

m Library Pros:
» Library allows using existing language infrastructure
» Smaller learning curve
- Don't need to learn new language constructs.
m Library Cons:
» Errors difficult to detect and debug w/o a compiler.

> Programs can enter undefined states
(e.g. segmentation fault from reading a non-existing field).

» Requirements not checked in the language of the library.

> Leaking confidential information to unauthorized users.

John Altidor Type Theory Tutorial 3/ 24

Type Systems

m Type System = Formally defined language (calculus) with
types.

m Types = Properties/classification over terms (syntax) of a
language.

John Altidor Type Theory Tutorial 4/ 24

Type Systems

m Type System = Formally defined language (calculus) with
types.

m Types = Properties/classification over terms (syntax) of a
language.
m Precisely defining what a language means

» Which programs are allowed in a language?

» How does a program execute?
L

John Altidor Type Theory Tutorial 4/ 24

Type Systems

m Type System = Formally defined language (calculus) with
types.

m Types = Properties/classification over terms (syntax) of a
language.
m Precisely defining what a language means

» Which programs are allowed in a language?
» How does a program execute?
> ..

m Enables proving properties about a language.
» Program is always in a well-defined state throughout execution
(no segmentation fault).

» Can prove properties related to software requirements (e.g.
information flow).

John Altidor Type Theory Tutorial 4/ 24

Type Systems

m Type System = Formally defined language (calculus) with
types.

m Types = Properties/classification over terms (syntax) of a
language.
m Precisely defining what a language means
» Which programs are allowed in a language?
» How does a program execute?
L
m Enables proving properties about a language.
» Program is always in a well-defined state throughout execution
(no segmentation fault).
» Can prove properties related to software requirements (e.g.
information flow).

m Compiler informs programmers of errors at compile-time.

John Altidor Type Theory Tutorial 4/ 24

Type Systems

m Type System = Formally defined language (calculus) with
types.

m Types = Properties/classification over terms (syntax) of a
language.
m Precisely defining what a language means
» Which programs are allowed in a language?
» How does a program execute?
L
m Enables proving properties about a language.

» Program is always in a well-defined state throughout execution
(no segmentation fault).

» Can prove properties related to software requirements (e.g.
information flow).

m Compiler informs programmers of errors at compile-time.

m Best explained with an example: MiniLang

John Altidor Type Theory Tutorial 4/ 24

MiniLang Syntax

m Concrete syntax is what humans write.

m Abstract syntax is what computers reason over.

Category Item Abstract Concrete
Expression e =X X

| num([n] n

| strls] ’s?

| +(er; e) e+ &

| ~Cer; e) e " e

|

let(x; e1; &) let x be € in &

John Altidor Type Theory Tutorial 5/ 24

Example Expressions

Abstract Concrete
+(qum[5]; +(num[4]; num[3])) |5 + 4 + 3

“(strl[john]; ~(x; strldoel)) | ’john’ ~ x ~ ’doe’

let (hours; num[24]; let hours be 24 in hours+24
+(hours; num[3])

John Altidor Type Theory Tutorial 6/ 24

m Semantics of terms (ASTs) defined w/ inference rules.

m Rules have the following form.

premises
Hh b
J

~~—~

conclusion

Rule Label

m No premises means axiom.

John Altidor Type Theory Tutorial 7/ 24

Static Semantics (Type Checking Rules)

(x,7)erl
.) ~——T.3
N~ num[n]: numT1 I+ strls]: strT2 MN=x:71

lFe: num [Fe: numT4 Fe: str [hFe: str
M- +(e;; €): num ' M- ~(e; &): str

T.5

lFeg:m Mix:mmbe:m
NE let(x; e; &): m

John Altidor Type Theory Tutorial 8/ 24

Example Type Derivation

T.3 T.1
T1 hrs:num + hrs: num hrs:num - num[3]: num T.4
F num[24]: num hrs:num + +(hrs; num[3]): num 6 ’

F let(hrs; num([24]; +(hrs; num[3]): num

John Altidor Type Theory Tutorial 9/ 24

Example Type Check Failure

T.1

T.3
T1 hrs:num + hours: num hrs:num + strl[abc]: str
F num[24]: num hrs:num + +(hours; strl[abcl): Fail
F let(hrs; num[24]; +(hrs; str[abc])

John Altidor Type Theory Tutorial 10/ 24

Dynamic (Operational) Semantics (Evaluation)

m Defining how to “execute” expressions in MiniLang.

m Specifically, defining a transition system/relation
between expressions to evaluate them to values.

m First, need to define values:

num[n] value str[s] value

John Altidor Type Theory Tutorial 11/ 24

Dynamic Semantics — Numerical Addition

e1 — €] .

+(e1; @) — +(e]; &)

/
e2f—)ez

Tamind; &) — +@uminl; &)

ny+ np = n3 b
+(um[n]; numlnp]) — numlng]

3

John Altidor Type Theory Tutorial 12/ 24

Dynamic Semantics — String Concatenation

e1 — €}

— — D.4
(e1; &) = “(e; &)

e — &
“(strlsi]; &) — “(strlsi]; eb)

S17S =853 b6
~(strls;]; strls]) — strls3]

John Altidor Type Theory Tutorial 13/ 24

Dynamic Semantics — Let Expressions

er — e
D.
let(x; e1; &) — let(x; e; e)

7

€1 value
D.
let(x; e; @) — [er/x]e

8

John Altidor Type Theory Tutorial 14/ 24

Safety Theorem — Preservation

m If e is a well-typed expression that is not a value, then
performing an evaluation step on e does not change its type.

m Formally, if e: 7 and e — €/, then € : 7.

John Altidor Type Theory Tutorial 15/ 24

Safety Theorem — Preservation

m If e is a well-typed expression that is not a value, then
performing an evaluation step on e does not change its type.

m Formally, if e: 7 and e — €/, then € : 7.

m Relates the compile-time analysis (type checking rules) with
the run-time behavior (evaluation rules).

m Important property for real programming langauges.

John Altidor Type Theory Tutorial 15/ 24

Preservation Motivation

What if Java did not preserve types during evaluation?

int x; // 4 bytes in Java
double y; // 8 bytes in Java

X = x + 8
—

What if this evaluated to a double?

John Altidor Type Theory Tutorial 16/ 24

Preservation Proof — Addition Case 1

Proof by induction on the possible typing and evaluation
combinations.
Case: (T.4,D.3)

num[mn]: num num(np]: num
+(num[n;]; num[np]): num

T.4

n+n=n3 o
+(qum[n]; numlnp]) — numlng]

3
Using rule T. 1:

_— T
num[n3]: num L]

John Altidor Type Theory Tutorial 17/ 24

Preservation Proof — Addition Case 2

Case: (T.4,D.1)

/
é;: num é&: numT4 e — € 5
+(er; €): num +(er; &) — +(ef; e)

1

We assume preservation holds for subexpressions. Hence, by the
inductive hypothesis, e;: num and e; — €] implies e/: num.
Rule T.4 gives us:

/. .
€ : num e: num

T.4
+(ef; e): num O

John Altidor Type Theory Tutorial 18/ 24

Preservation Proof — Addition Case 3

Case: (T.4,D.2)

num[m]: num e: num
+(num[n]; &): num

T.4

e — &

2
+(numlml; &) — +(numlml; €)) P

Since e2: num and e; — €5, by the inductive hypothesis, €} :

num.

Rule T.4 gives us:

—_— T.1
num[m]: num ey: num

+(num[ml; €}): num g

John Altidor Type Theory Tutorial 19/ 24

Preservation Proof — Remaining Cases

m Remaining cases in preservation proof apply similar reasoning.

m We show one more case involving a common lemma.

John Altidor Type Theory Tutorial 20/ 24

Substitution Lemma

m For a case in the preservation proof, we need the
Substitution Lemma:

m In words, we can substitute subexpressions that are of the
same type in an expression e without changing the type of e.

John Altidor Type Theory Tutorial 21/ 24

Substitution Lemma

m For a case in the preservation proof, we need the
Substitution Lemma:

m In words, we can substitute subexpressions that are of the
same type in an expression e without changing the type of e.

m Formally:
fr-e:7"andT,y:7'Fe:7, thenT+ [¢/y]e: T.

m Proof of this lemma by induction on the structure of e.

John Altidor Type Theory Tutorial 21/ 24

Preservation Proof — Let Case

Case: (T.6,D.8)

€e1:71 X TMbEe:m

T.6
let(x;e;@): ™

€1 value b
let(x; €1; &) — [er/x]ex

8
Since e; : 74 and x : 71 F e : 7, by substitution lemma, we have

[e1/x]ex i . [
We have completed the proof of preservation!

John Altidor Type Theory Tutorial 22/ 24

m Preservation + Progress = Type Safety
» Progress theorem and proof presented in them paper.

John Altidor Type Theory Tutorial 23/ 24

m Preservation + Progress = Type Safety
» Progress theorem and proof presented in them paper.

m Type safety ensure program behavior is well-defined
throughout its execution.

John Altidor Type Theory Tutorial 23/ 24

m Preservation + Progress = Type Safety
» Progress theorem and proof presented in them paper.

m Type safety ensure program behavior is well-defined
throughout its execution.

m Proving language properties are important (e.g. ruling out
certain errors, publishing).

John Altidor Type Theory Tutorial 23/ 24

m Preservation + Progress = Type Safety
» Progress theorem and proof presented in them paper.
m Type safety ensure program behavior is well-defined
throughout its execution.
m Proving language properties are important (e.g. ruling out
certain errors, publishing).
m But proofs are long, error prone, and difficult to validate.

m Automated support for deriving proofs and checking proofs
of language properties.
» Twelf, Coq, Isabelle, Agda, ...

John Altidor Type Theory Tutorial 23/ 24

m Programming languages can be defined using formal
mathematical specification.
» Which programs are allowed.
» How a program executes.
m Formal specification enables proving language properties.
m Type system = formally defined language with types.
m Type safety theorems (e.g. preservation) establish relationship

between compile-time analysis and run-time behavior.

John Altidor Type Theory Tutorial 24/ 24

	Introduction
	Motivation
	Type Systems
	Syntax
	Inference Rules
	Type Checking
	Evaluation
	Preservation Theorem
	Preservation Motivation
	Preservation Proof
	Substitution
	Type Safety

