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1 Introduction

Type theory is a logical formalism used extensively in the study and design of programming lan-

guages to define the semantics and behavior of deductive systems. According to [17], “The central

organizing principle of language design is the identification of language features with types. The

theory of programming languages, therefore, reduces to the theory of types.” Type theory ranges

over several formal systems, but for this paper, type theory refers to the design, analysis and study

of type systems. Due to the wide variety of usage of the phrase “type system”, it lacks a standard

definition. According to [14]: “A type system is a collection of rules that assign a property called a

type to the various language constructs- such as variables, expressions, functions or modules- that a

computer program is composed of.” A type system formally defines many aspects of programming

language such as in the following far-from-exhaustive list:

1. Which expressions are allowed in the language; specifically, what a well-formed or well-typed

program in the language is. Vaguely, well-typed programs are programs that entail certain

properties such as the absence of certain program errors. [19]

2. How program abstractions and components of large systems can be tied together.

3. How expressions in the language are evaluated. What is the order of evaluation. Are ex-

pressions evaluated eagerly (every expression in program is computed immediately) or lazily

(expressions are not evaluated until the program requires their values).

Type systems model complex language features and enable one to prove properties about languages.

Type systems are rigorous enough to be used as a language specification for a compiler writer to

implement the language; the implementation of a programming language can follow from its type

system.

A type system is specified by a set of inference rules that define a programming language.

These inference rules are partitioned into two categories. Rules defining the types of the terms or

expressions in the language are the static semantics. Static semantics inductively define a relation

between expressions and types. Dynamic semantics or operational semantics inductively define

how to evaluate expressions in the language. Specifically, dynamic semantics define a transition
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system between expressions, where the values that expressions evaluate to are the final states of

the system.

Type systems are best explained with an example. The following sections define a programming

language we coin as MiniLang . The grammar of MiniLang is defined in Section 2. Its static and

dynamic semantics are given in Sections 3 and 4, respectively. We prove an important property, type

preservation, for MiniLang in Section 5. We show to prove another important property, progress,

by proving it for one type of expression in MiniLang in 6. The proof of progress for all other

expressions is similar, so we skip those cases for brevity.

Proofs of language properties are important but long, tedious, and error prone because there are

many cases to reason about. As a result, proof assistants have been developed for proving language

theory. These software tools provide a language for writing properties and proofs of properties.

These tools can find mistakes in proofs and verify proof correctness. We cover one proof assistant,

Twelf [11], in Section 7. All of the Twelf code presented in this paper can be found in [15]. Section 8

concludes with a summary.

2 MiniLang Grammar

This section presents the syntax of MiniLang , a language of numbers and strings. The following

notation may seem unusual because most programmers write programs in the concrete syntax of a

language. The concrete syntax of language specifies how humans write programs in the language.

Type systems are often written over the abstract syntax of the language to reflect that expressions in

the language are abstract syntax trees (ASTs) or more simply called terms. ASTs are mathematical-

like expressions that represent a composition of nodes. Each AST has the form:

operator(operand1, operand2, . . . , operandn), where each operand is an AST, the operator is a root

node of these ASTs, and n ≥ 0. AST nodes are operators that take a specified number of operands.

An operator can take in zero operands; in this case, the parentheses after the operator are typically

not written. For instance, in the AST add(6, 1), the node 6 could have been written as 6(), and

add(6, 1) is equivalent to add(6(), 1()). Only the abstract syntax is needed to reason about a

language.

The abstract and concrete syntax of a language is defined with a formal grammar that spec-

ifies production rules on how AST nodes are constructed. Each production rule has the form

“A : : = B1 | B2 | . . . | Bn”. A non-terminal symbol A denotes a set of ASTs specified by a pro-

duction rule, where A is on the left-hand side of the : : =. Each Bi denotes a category of AST

nodes or a terminal symbol denoting a specific AST node. The production rule specifies that the A

symbol denotes the category of nodes that is the union of nodes in B1, B2, . . . , Bn. Figure 1 shows

the grammar of MiniLang .
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Category Item Abstract Concrete

Expression e : : = x x
| num[n] n
| str[s] ’s’
| +(e1; e2) e1 + e2
| ^(e1; e2) e1 ^ e2
| let(x; e1; e2) let x be e1 in e2

Figure 1: Grammar of MiniLang

The only non-terminal symbol in MiniLang is e, which denotes the set of ASTs that are expres-

sions. Expressions can be the following:

1. Numbers: num[n], where n is a sequence of digits.

2. Strings: str[s], where s is a sequence of characters.

3. Variable names: x

4. The sum of two subexpressions: +(e1, e2).

5. The string concatenation of two subexpressions: ^(e1, e2).

6. A let expression where the subexpression e2 is evaluated in a context that has variable x

bound to the value of e1.

Example expressions are shown in Figure 2. For the remaining sections in this paper, only the

abstract syntax will be shown.

Abstract Concrete

+(num[5]; +(num[4]; num[3])) 5 + 4 + 3

^(str[john]; ^(x; str[doe])) ’john’ ^ x ^ ’doe’

let(hours; num[24]; +(hours; num[33]) let hours be 24 in hours+33

Figure 2: Example MiniLang Expressions

3 Static Semantics

Although grammars only allow a limited set of ASTs, a language may want to filter out additional

ASTs allowed by the grammar that are not well-formed or “make sense” according to the language

specification. For MiniLang we will formally define the addition of two numbers and the concate-

nation of two strings. On the contrary, we will not define the addition between a number and a

3



string and likewise for concatenation. We say such expressions are ill-defined or ill-typed and are

not considered part of the MiniLang language. According to this specification, the following two

expressions are ill-typed even though they are in the grammar of MiniLang .

1. +(num[4], str[doe])

2. let(daysPerWeek, str[seven], +(num[1], daysPerWeek))

Filtering out ill-typed ASTs is not always possible with only the grammar specification such as

the second AST above. The reason is because the grammar is context-free, and determining that

the second AST is ill-typed requires a context-sensitive analysis. Programming languages typically

specify their syntax with context-free grammar because they are conceptually and computationally

easier to parse than context-sensitive grammars. The reason why is beyond the scope of this paper.

This filtering process is performed by type checking the AST nodes. Type checking tries to

derive a type to each AST node using the inference rules of the static semantics of a language. If

no such type can be assigned to a node, the node is not considered to be well-typed (well-formed)

and compilers would flag it as an error in the program.

Inferences rules have the following form:

premises︷ ︸︸ ︷
J1 J2 . . . Jn

J︸︷︷︸
conclusion

Rule Label

Each Ji is a proposition or judgment. If all of the judgments of the premise (Ji’s) are true, then

the conclusion judgment J is true. Rules with no premises are axioms because the conclusion

is true under any conditions. Judgments asserting the type of an AST node typically have the

form Γ ` e : τ saying that node e has type τ under the typing context Γ, where Γ is a function

mapping variable names to types.

Consider type checking MiniLang . To discriminate between expressions that are numbers and

strings, we define two types: num and str.

Figure 3 gives the typing rules for MiniLang . Rule T.1 says that every number has type num.

Rule T.2 says that every string has type str. Rule T.3 says that if the typing context maps a

variable x to type τ , then in that context, x has type τ . Rule T.4 says that the addition of two

subexpressions that have type num is also a num. Rule T.5 says that the concatenation of two

subexpressions that have type str is also a str. Rule T.6 is the more complicated rule that uses

multiple typing contexts. It says that if e1 (which will be the value of x in e2) in context Γ has

type τ1 and if under the context of Γ extended with the mapping (x, τ1) that e2 has type τ2, then

the entire let expression has type τ2.

Figure 4 shows how typing rules are applied to derive the type of an expression. Figure 5 shows

how an ill-typed expression is discovered.
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Γ ` num[n]: num
T.1

Γ ` str[s]: str
T.2

(x, τ) ∈ Γ

Γ ` x : τ
T.3

Γ ` e1: num Γ ` e2: num

Γ ` +(e1; e2): num
T.4

Γ ` e1: str Γ ` e2: str

Γ ` ^(e1; e2): str
T.5

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2
Γ ` let(x; e1; e2): τ2

T.6

Figure 3: Static Semantics of MiniLang

` num[24]: num
T.1

hours : num ` hours: num
T.3

hours : num ` num[3]: num
T.1

hours : num ` +(hours; num[3]): num
T.4

` let(hours; num[24]; +(hours; num[3]): num
T.6

Figure 4: Example Typing Derivation

4 Dynamic Semantics

The dynamic semantics of MiniLang define a transition system for evaluating MiniLang expressions.

In order to know when we are done evaluating an expression to a value, we need to define values.

Values in MiniLang are either a single number or a single string.

num[n] value str[s] value

The inductive definition of the transition relation for evaluation expressions is shown in Figure 6.

Rules D.1-3 define how to evaluate additions. Rule D.3 says that the addition of two single numbers

steps to (evaluation step) a number that is the sum of those two numbers. Rule D.1 says if an

evaluation step can be performed on the left summand, then the addition expression steps to an

expression that is the same except with the step performed on the left summand. Once we are done

evaluating the left subexpression to a number, rule D.2 allows us to evaluate the right subexpression.

Rules D.4-6 are analogous to rules D.1-3 for string concatenation. Rule D.7 says we evaluate the

` num[24]: num
T.1

hours : num ` hours: num
T.3

hours : num ` str[abc]: str
T.1

hours : num ` +(hours; str[abc]): Fail
` let(hours; num[24]; +(hours; str[abc])

Figure 5: Example Type Failure
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expression (e1) that will be bound to variable of the let expression. Once e1 becomes a value, then

rule D.8 says to we can evaluate the body (e2) of the let expression by replacing the variable with

that value.

e1 7→ e′1
+(e1; e2) 7→ +(e′1; e2)

D.1
e2 7→ e′2

+(num[n1]; e2) 7→ +(num[n1]; e′2)
D.2

+(num[n1]; num[n2]) 7→ num[n1 + n2]
D.3

e1 7→ e′1
^(e1; e2) 7→ ^(e′1; e2)

D.4
e2 7→ e′2

^(str[s1]; e2) 7→ ^(str[s1]; e′2)
D.5

^(str[s1]; str[s2]) 7→ str[s1^s2]
D.6

e1 7→ e′1
let(x; e1; e2) 7→ let(x; e′1; e2)

D.7
e1 value

let(x; e1; e2) 7→ [e1/x]e2
D.8

Figure 6: Dynamic Semantics of MiniLang

5 Type Preservation

Type preservation or simply preservation is an important programming language property for elim-

inating certain errors that result in programs with undefined behavior. It establishes a key relation-

ship between compile-time analysis (static semantics) and runtime behavior (dynamic semantics)

of programs. The Preservation Theorem states that evaluating an expression does not change its

type:

Theorem 1. (Preservation) If e : τ and e 7→ e′, then e′ : τ .

Preservation is important for real programming languages. Suppose, for example, that Java

did not preserve types during evaluation, and consider what could go wrong in the following code

segment:

int x; // 4 bytes in Java

double y; // 8 bytes in Java

x = x + 8︸ ︷︷ ︸
What if this evaluated to a double?

Different formats are used by compilers to represent values of different types. In order to

interpret what is being represented by bytes at certain memory locations, the compiler has to

6



know what type of value is at this location. Once the compiler knows what type of value is at a

location, it knows the procedure to use to interpret the bytes at that location and the appropriate

instructions to generate. However, if the type of the value at that location changed without the

compiler knowing, then when the program tries to use the value at that location, what the program

will do next is undefined. Hence, type preservation is needed to ensure that the behavior of the

program throughout its execution is well-defined.

The remainder of this section proves preservation for MiniLang . We prove preservation by

induction by showing that for each possible combination of the typing and evaluation judgments,

preservation holds. The first proof case, for example, proves the preservation theorem for the case

when typing rule T.4 was applied to derive judgment e : τ and evaluation rule D.3 was applied to

derive judgment e 7→ e′. The conclusion to prove for each proof case is judgment e′ : τ .

5.1 Base Case: (T.4, D.3) – Addition Case 1

num[n1]: num num[n2]: num

+(num[n1]; num[n2]): num
T.4

+(num[n1]; num[n2]) 7→ num[n1 + n2]
D.3

Using rule T.1:

num[n1 + n2]: num
T.1

5.2 Inductive Case: (T.4, D.1) – Addition Case 2

e1: num e2: num

+(e1; e2): num
T.4

e1 7→ e′1
+(e1; e2) 7→ +(e′1; e2)

D.1

We assume preservation holds for subexpressions. Hence, by the inductive hypothesis, e1: num

and e1 7→ e′1 implies e′1: num. Rule T.4 gives us:

e′1: num e2: num

+(e′1; e2): num
T.4

5.3 Inductive Case: (T.4, D.2) – Addition Case 3

num[n1]: num e2: num

+(num[n1]; e2): num
T.4

e2 7→ e′2
+(num[n1]; e2) 7→ +(num[n1]; e′2)

D.2

Since e2: num and e2 7→ e′2, by the inductive hypothesis, e′2: num.

Rule T.4 gives us:

num[n1]: num
T.1

e′2: num

+(num[n1]; e′2): num
T.4
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5.4 Concatenation Cases

The proof of the concatenation cases are analogous to the proofs of the addition cases by just

replacing the num’s with str’s and the +’s with ^’s.

5.5 Substitution Lemma

Before we can prove the next case for our preservation proof, we need the Substitution Lemma.

Informally, this lemma states that we can substitute subexpressions that are of the same type in

an expression e without changing the type of e.

Lemma 1. (Substitution) If y′ : τ and y : τ ` e : τ ′, then [y′/y]e : τ ′.

This lemma can be proved by a typical proof by induction on the structure of e, so we skip this

proof for brevity. Now we return back to the proof of preservation.

5.6 Base Case: (T.6, D.8) – Let Case 1

e1 : τ1 x : τ1 ` e2 : τ2
let(x; e1; e2): τ2

T.6

e1 value

let(x; e1; e2) 7→ [e1/x]e2
D.8

Since e1 : τ1 and x : τ1 ` e2 : τ2, by substitution lemma, we have [e1/x]e2 : τ2.

5.7 Inductive Case: (T.6, D.7) – Let Case 2

e1 : τ1 x : τ1 ` e2 : τ2
let(x; e1; e2): τ2

T.6

e1 7→ e′1
let(x; e1; e2) 7→ let(x; e′1; e2)

D.7

Since e1: τ1 and e1 7→ e′1, by the inductive hypothesis, e′1: τ1. Using rule T.6:

e′1 : τ1 x : τ1 ` e2 : τ2

let(x; e′1; e2): τ2
T.6

We have completed the proof of preservation for MiniLang !

5.8 Final Remarks of Preservation Proof

We have proved preservation by showing that for each possible combination of the typing and

evaluation judgments, the preservation theorem holds. How does one know when such a combination

is possible? A combination is possible when there exists a unification of the patterns of the two

judgments in question. For example, notice in the preservation proof, there was no case for typing

rule T.4 and evaluation rule D.4. The conclusion of rule T.4 contains the expression +(e1; e2).
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We can think of the pattern of the expression +(e1; e2) as that same expression except that the

subexpressions or parameters e1 and e2 are variables that can be replaced with any other expression.

In order for (T.4, D.4) to be a possible combination case for the preservation proof, there must

exists a unifier for the pattern of +(e1; e2) (conclusion expression of T.4) and the pattern of ^(e1;

e2) (expression to the left of 7→ in conclusion of D.4). Because the first symbols in each of those

two expressions contain constant symbols (+ and ^) that differ, no such unification exists; so the

(T.4, D.4) combination is not a possible case for the preservation proof. These remarks hint at the

fact that these type of proofs can be automatically verified (e.g. by a proof assistant tool such as

Twelf).

6 Progress Theorem

MiniLang expressions are evaluated to values by inputting them to the transition system defined

by the dynamic semantics given in Figure 6. Each transition in the system reduces an expression

or brings the expression closer to a value. However, not every irreducible expression is a value such

as the following:

+(num[5]; str[abc]) 7→ ×
An expression e that is not a value, but for which there does not exists an e′ such that e 7→ e′ is

said to be stuck. It should be the case that any stuck expression is ill-typed. Moreover, well-typed

expressions do not get stuck. This property is expressed formally by the progress theorem.

Theorem 2. (Progress) If e : τ , then either e value or there exists an expression e′ such that

e 7→ e′.

Progress is proved by induction on the typing rules. Again there a lot of cases, so for brevity

we show just one case to get an idea of how to prove this theorem.

6.1 Inductive Case: (T.4) – Addition Case

e1: num e2: num

+(e1, e2): num
T.4

By the inductive hypothesis, since e1 : num, either e1 value or there exists an expression e′1 s.t.

e1 7→ e′1.

Suppose e1 value. Then either e1 = num[n1] or e1 = str[s1]. Since e1 : num, then it must

be the case that e1 = num[n1].

Therefore, e1 = num[n1] or there exists an expression e′1 such that e1 7→ e′1. Similarly, e2 =

num[n2] or e2 7→ e′2 for some e′2.

Suppose e1 7→ e′1. Then:
e1 7→ e′1

+(e1; e2) 7→ +(e′1; e2)
D.1
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Suppose e1 = num[n1] and e2 7→ e′2. Then:

e2 7→ e′2
+(num[n1]; e2) 7→ +(num[n1]; e′2)

D.2

Suppose e1 = num[n1] and e2 = num[n2]. Then:

+(num[n1]; num[n2]) 7→ num[n1 + n2]
D.3

We have covered all of the nested cases for rule T.4.

7 Twelf

In previous sections we showed how to formalize a programming language with a grammar for

defining its syntax, static semantic (type checking) rules that defined which programs in a language

are well-formed, and dynamic semantics defining how to execute programs in the language. A formal

definition of a language enables the ability to prove properties about the language. We presented

two important properties, preservation and progress, that relate the static semantics (compile-time

analysis) with the dynamic semantics (runtime behavior).

We showed how to prove properties of languages by structural induction. These proofs are

typically are long, tedious, and involve many cases. As a result, it is easy to make a mistake while

writing such proofs. Furthermore, the length and detail of these proofs means it is easy for a human

to miss mistakes while checking the proof. However, verifying and deriving proofs can (sometimes)

be done automatically. Proof assistants such as Twelf [11], Coq [1], and Isabelle [9] are software

tools that enable one to encode theory in their respective languages. Depending on the power of

these tools, they can verify proofs of theorems or derive proofs of theorems. Using any of these tools

requires a very large learning curve, and explaining all of the details of how they work is beyond

the scope of this paper. To sketch an idea of how they work, the remainder of this section explains

the Twelf encoding of MiniLang . The entire Twelf encoding is available online [15]. Further details

on using Twelf can be found in other Twelf tutorials [12].

7.1 MiniLang Syntax in Twelf

File syntax.elf from [15] contains the Twelf encoding of MiniLang ’s syntax. In Twelf, there are

three levels of objects. Kinds are at the highest level. Types are at the second level. Terms are

at the lowest level. Each type is of a certain kind. Each term is of a certain type. For example,

we could think of the type Array[Int], which is an array of integers, to be of kind Array. A

term of type Array[Int] could be [1, 2, 3, 4]. In Twelf, one defines their language by defining

kinds, types, and terms. The kind type is a primitive kind defined in the Twelf language. More

information on Twelf’s type system can be found in [18].

Next, we describe the statements in file syntax.elf using the terminology presented above.
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On line 4, “exp : type” states that exp is a type of kind type. Similarly, line 7 defines typ to be

type of kind type, and line 10 defines nat to be a type of kind type. Line 11 defines the term z to

be of type nat. Line 12 defines s to be a function term of the function type from nat’s to nat’s.

Lines 11 and 12 encode (Peano) natural numbers {z, s(z), s(s(z)), s(s(s(z))), ...}. Lines

14–22 define strings to be a sequence of the char’s separated by commas. The functions enat and

estr are just ways to say that natural numbers and strings are also expressions. For example, z

has type nat, but (enat z) has type exp. 1

Lines 29–32 define the category of expressions with function types. For instance, “add : exp

-> exp -> exp.” says that add is a function that takes into two exp’s and returns an exp. This

corresponds to the grammar rule

Expression e : : = +(e1; e2)

stating that the addition of two expressions is also an expression. 2 Similarily, “cat : exp -> exp

-> exp.” says that cat is a function that takes into two exp’s and returns an exp; cat corresponds

to the string concatenation of two subexpressions. The last two lines of syntax.elf define two

terms num and string that represent the only two types in MiniLang .

The number of arguments a function term defined in Twelf takes may not be clear to a reader

who is not familiar with currying [2, 4]. For example, the add function term looks like a function

that takes in a single exp term and returns another function of type exp -> exp. Functions in

Twelf are applied to terms by currying, where there is no distinction between functions f and f ′

when passing them two arguments if f(x) returns another function g(y) and f ′(x, y) = f(x)︸︷︷︸
g

(y).

Passing a function multiple arguments is transformed into a chain of function calls, where each

function in the chain is applied to a single argument. So a function that returns another function

can be thought of as a function that takes in multiple arguments. Conversely, if a function f takes

in multiple arguments x1, x2, . . . , xn (where n ≥ 2), then f(t) can be thought of as a function g

that is the same as f except that occurrences of variable x1 in the body of f are replaced with

term t in the body of g.

7.1.1 Representing terms w/ variables in Twelf using Higher-Order Abstract Syntax

The encoding of the let term in Twelf uses the technique of higher-order abstract syntax (HOAS) [6].

HOAS is a technique for representing abstract syntax trees with bound variables. The abstract

syntax from Section 2 used to describe the grammar of MiniLang is actually first-order abstract

syntax (FOAS). In FOAS, each AST has the form o(t1, t2, . . . , tn), where o is an operator and

t1, t2, . . . , tn are each AST themselves. The operands of an operator correspond to subexpressions.

1It would be nice if Twelf had the notion of subtyping. Then we could just tell Twelf nat <: exp, so Twelf would
infer that z should also have type exp without having to wrap it as (enat z).

2There are a few minor things missing in the definition of MiniLang in this paper and its encoding in Twelf. For
example, line 32 defines an expression for representing the length of a string (len(e)). Some details were left out for
brevity.
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For example, in “+(e1; e2)”, e1 and e2 are operands/subexpressions of the + operator. The Twelf

encoding of “+(e1; e2)” is “add : exp -> exp -> exp.”, where the add corresponds to +, the

leftmost exp corresponds to e1, and the middle exp corresponds to e2.

In HOAS, ASTs declare the variables they bind. For example, consider the AST o(t1, t2, . . . , tn).

In HOAS, each ti has the form x1, x2, . . . xk.t, where t is an AST, each xj is a variable bound in

t, and k ≥ 0; if k = 0, then ti does not introduce new variables in the body, t. One advantage of

knowing each variable introduced by an AST is that we can rename variables without changing the

meaning of the AST.

Consider the let expression in MiniLang and its representation in FOAS:

let(x; e1; e2)

Recall that a let expression is evaluated by binding the variable x to the value of e1 in e2. Hence,

a let expression can be modeled with the following HOAS:

let(e1; x.e2)

The “x.e2” captures that variable x is bound in expression e2. HOAS lets us know where variables

are being bound. This lets us easily determine that the following two expressions are equivalent,

since they only differ in variable names:

let(3; x.+(x; 4)) ≡ let(3; y.+(y; 4))

Our Twelf encoding of the let expression is on line 36 of file syntax.elf:

let : exp -> (exp -> exp) -> exp.

This line encodes the HOAS version of let, which can be seen with the type of its second argument:

(exp -> exp). Usually, each operator such as add and cat only took in exp arguments, where

the arguments represented subexpressions. However, the second argument to let is not just an

ordinary subexpression but a subexpression that introduces a new variable. The second argument

to let represents a higher-order AST of the form “x.e2”.

An AST that introduces new variables is represented in Twelf by a function. Functions in

programming languages are really just terms with holes. The holes are represented by free variables,

and these holes are filled in when these (terms w/ holes)/functions are applied to other terms.

Hence, “x.e2” can be thought of as the function or lambda-abstraction “λx.e2”, where e2 is the

body of the function and x is a variable that is bound to a term in e2. A term t of type (exp ->

exp) will be a term of type exp that contains occurrences of a free variable x. Free variable x will

be replaced with another term t′ in the body of t when term/function t is applied to t′. Twelf’s

syntax for the function “λx.e” is “[x] e”. Figure 7 gives a concrete example of a let expression

in concrete syntax and its corresponding representation in Twelf’s HOAS.
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Concrete Syntax Twelf HOAS

let x = 1 + 2︸ ︷︷ ︸
e1

in x + 3︸ ︷︷ ︸
e2

let (add 1 2)︸ ︷︷ ︸
e1

([x] add x 3)︸ ︷︷ ︸
x.e2

Figure 7: Example Higher-Order Abstract Syntax in Twelf

7.2 MiniLang Static Semantics and Judgments in Twelf

File typing.elf from [15] contains the encoding of MiniLang ’s static semantics in Twelf. Line 5,

“of : exp -> typ -> type.”, defines the relation of representing the judgment e : τ . It defines

of to be a function kind or type family [5, 13]. Type families are functions that return types instead

of terms. The “of” relation can be thought of as (1) a function that returns types when applied to

exp and typ terms or (2) as a set of types indexed by exp and typ terms.

Judgments are represented in Twelf as dependent types [10, 16, 3]. The of type family returns

dependent types of kind type. Hence, function of returns judgments. Dependent types are types

that include terms as one of its components. Example dependent types come from the set of n-

dimensional vectors of real numbers denoted Vec(n). For instance, suppose 3 is a term representing

the number 3, N is a type representing the set of natural numbers, and 3 is of type N. Also, assume

Vec is a function that takes in a natural number n as input and returns a type representing the set

of n-dimensional vectors. Then, Vec(3) is a dependent type representing 3-dimensional vectors of

real numbers. A term of type Vec(3) is the vector [7, 3, 4]. Furthermore, function Vec denotes a

type family indexed by natural numbers: Vec(0), Vec(1), Vec(2), Vec(3), . . .

The of type family is indexed by exp and typ terms. The dependent type “of e τ” represents

the judgment e : τ . For example, dependent type “of (enat z) num” represents the proposition

or judgment z : num. A proof or derivation of a judgment/type is represented by a term of that

type. An example proof will be presented later in this section.

Inference rules in Twelf are modeled as functions that return terms of dependent types. Consider

the function term of/nat defined on line 7 of file typing.elf. Strings that begin with capital letters

in Twelf are interpreted to be parameters. The N parameter in “of (enat N) num” is passed to

the enat function term. Since enat only takes in values of type nat, so does of/nat. Twelf is able

to infer that the N variable must be bound to a term of type nat.

At first, it seems the of/nat function returns types. For example, it seems “of/nat z” returns

the dependent type “of (enat z) num”. However, “of/nat z” actually returns a term of type

“of (enat z) num”. The term returned by “of/nat z” represents a derivation or proof of the

judgment z : num; this judgment is represented by type “of (enat z) num”, which is the type of

term “of/nat z”. Hence, the of/nat term corresponds to rule T.1, which is the rule that allows us

to derive that any natural number has type num. Similarly, the of/str function term takes in any

string s and returns a derivation/term of a judgment/type stating that string s has type string.

Function term of/add models rule T.4. Premises of inference rules are represented by inputs

that must be terms of a dependent type. For example, function of/add takes in two (explicit [8])
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arguments of dependent types.3 Variables E1 and E2 are bound to terms of type exp. Dependent

type “of E1 num” represents the judgment e1 : num. A term of type “of E1 num” represents a

derivation of e1 : num. Hence, of/add takes in a derivation of e1 : num and a derivation of e2 :

num and returns a derivation/term of type “of (add E1 E2) num”; this type represents judgment

+(e1; e2) : num.

7.2.1 Hypothetical Judgments in Twelf

Inference rules such as rule T.6 involve the use of context-sensitive propositions or hypothetical

judgments [7]. Hypothetical judgments are judgments that make use of hypothetical assumptions.

For example, the second premise of rule T.6, “Γ, x : τ1 ` e2 : τ2”, is a hypothetical judgment. In

order to prove that this proposition holds, judgment e2 : τ2 needs to be proved; when proving e2 : τ2,

however, we can assume that the hypothetical assumption, “Γ, x : τ1” also holds. Specifically,

judgment e2 : τ2 needs to be proved in a context where we assume that variable x has type τ1 and

we assume that the other typing assumptions in Γ also hold.

Hypothetical judgments are modeled in Twelf as function types. Assumptions of a hypothetical

judgment are the input types of a function. Encoding hypothetical judgments as function types is

similar to the technique of higher-order abstract syntax discussed in Section 7.1.1, where syntactic

terms with binders (e.g. the body of the let expression) are encoded as terms with holes or

equivalently functions that take in other terms as inputs and return terms as outputs. In the case

of hypothetical judgments, assumptions are the holes in the terms/proofs of those judgments. A

proof of hypothetical judgments takes in proofs of hypothetical assumptions as inputs and returns

a proof as output. Taking in hypothetical assumptions as inputs simulates extending the context

with additional assumptions. The assumptions/inputs can be used in the body of a function to

derive the desired output/conclusion.

Hypothetical judgments are encoded with a generalization of a function type called a pi-type,

denoted Πx : S.T . Terms of pi-types are called pi-abstractions. First, a lambda-abstraction, denoted

“λx : S.e”, is a function term of a more conventional kind of function type, S → T . A function

of this type takes in a term of type S and returns a term of type T . However, a pi-abstraction of

pi-type Πx : S.T would map a term s of type S to a term of type [s/x]T . That is, the return type of

a pi-type can vary according to the argument supplied. Hence, if x is (syntactically) a part of return

type T in the pi-type Πx : S.T , then a term returned by a function of that pi-type is a term of a

dependent type. In that case, return type T depends on the input term x. If x is not a part of type

T in Πx : S.T , then we abbreviate Πx : S.T as S → T . This signals that a lambda-abstraction can

be of this type, since the return type does not involve the argument. Lastly, the pi-type Πx : S.T

is represented in Twelf syntax as {x:S} T.

3Function of/add actually takes in four arguments. The first two arguments are the exp terms E1 and E2. However,
these arguments are implicit arguments and typically do not need to be mentioned because they can be inferred from
the last two explicit arguments of dependent types. For example, since the dependent type “of E1 num” includes
E1 as one if its components, Twelf can extract E1 from this type. For more information on implicit and explicit
arguments see [8].
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A common Twelf coding convention is used in the return type of the of/let function term

given on line 20 of file typing.elf:

of (let E1 ([x] E2 x)) T2

This expression could have been replaced with the shorter expression: “of (let E1 E2) T2”.

Twelf is able to infer that the type of variable E2 in the shorter expression is function type

“exp -> exp” (or equivalently, an exp with free variable occurrences). However, we applied a

Twelf coding convention when we replaced E2 with the equivalent function term ([x] E2 x). The

wrapper function or eta-expansion of E2, ([x] E2 x), is used just to make it easier to see that E2

is a function term that takes in a single argument.

The of/let term represents rule T.6 and is of a higher-order4 function type:

of/let : ({x: exp} of x T1 -> of (E2 x) T2) ->

of E1 T1 ->

of (let E1 ([x] E2 x)) T2

The second argument type “of E1 T1” corresponds to the premise “e1 : τ1”. The type of of/let’s

first argument is the pi-type: “{x: exp} of x T1 -> of (E2 x) T2”; let P denote this pi-type.

A pi-abstraction of type P takes in two arguments: The first is an exp term, which will be bound to

variable x. The second argument is a term of type “of x T1” representing a proof that x has type

T1. Given two such terms, a pi-abstraction of type P should return a derivation of “of (E2 x) T2”,

where (E2 x) is the E2 term with its hole filled in by the exp term that is bound to x.

The pi-type P represents the second premise “Γ, x : τ1 ` e2 : τ2” of rule T.6. Passing a deriva-

tion dx of type “of x T1” to a pi-abstraction simulates extending the typing context with the

assumption “x : τ1”. The derivation dx of type “of x T1” can be used in the body of the pi-

abstraction to return a term/proof of “of (E2 x) T2”.

7.3 Twelf Theorems, Proofs, and Wrapup

Explaining all of the details of the Twelf code is beyond the scope of this paper. So in this section,

we conclude the Twelf discussion with a brief overview of the remaining files of the Twelf MiniLang

encoding, how theorems are specified in Twelf, presenting example Twelf proofs, and explaining

how Twelf helps with proving theory about languages.

7.3.1 Twelf Project Files

Twelf projects are stored in directories containing a configuration file typically named sources.cfg.

The sources.cfg file tells Twelf the files to read and the order in which to process them. The

4A higher-order function type is a function type where an input type is also a function type. Similarly, A higher-
order function term such as of/let is a function that takes in a function as input.
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evaluation.elf file contains the dynamic semantics of MiniLang . File preservation.elf con-

tains the preservation theorem and its proof. File progress.elf contains the progress theorem

and its proof. The other files are explained throughout Section 7.

7.3.2 Theorems are Function Types. Proofs of Theorems are Function Terms.

Theorems in Twelf are encoded in a similar manner to (for all)-(there exists) queries. For example,

below is the encoding of the progress theorem.

%theorem

progress :

forall* {E} {T}

forall {O:of E T} exists {NS:not_stuck E}

true.

The forall* line declares the variables in the theorem. The next line states that for every

derivation of the typing judgment, of E T, where the derivation of that judgment is bound to O,

there exists a derivation of the judgment that expression E is not stuck (NS:not stuck E). The

following two rules define the not stuck judgment.5

not stuck/val: not stuck E <- value E. states that if E is value, then E is not stuck.

not stuck/step: not stuck E <- step E E’. states that if there exists an E’ such that

step E E’, then E is not stuck as well.

Note that the above progress theorem is nothing more than a function type. Given a term/proof

of the judgment of E T, a function of this type should return a term/proof of the judgment

not stuck E. Hence, a proof of the progress theorem/(function type) is a (total) function or term

of the function type representing the theorem.

7.3.3 Checking and Deriving Proofs

The benefit of using Twelf is that it can check your proofs and occasionally derive proofs. File

test typing.elf, for example, provides two example judgments that can be derived automatically

by Twelf.

%query * 1 D1 : of (estr (a , b , c , a , eps)) string.

%query * 1 D2 : of (add (enat (s z)) (enat z)) num.

The first query ask Twelf to derive that the type of the str[abca] is str, and save that

derivation in D1. The second query ask Twelf to derive that the type of +(num[1]; num[0]) is

num, and save that derivation in D2.

Below is the Twelf output from those queries.

5In Twelf, function types can be written using either arrows pointing to the left or pointing to the right.
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loadFile test_typing.elf

[Opening file test_typing.elf]

%query * 1

of (estr (, a (, b (, c (, a eps))))) string.

---------- Solution 1 ----------

Empty Substitution.

D1 = of/str (, a (, b (, c (, a eps)))).

____________________________________________

%query * 1

of (add (enat (s z)) (enat z)) num.

---------- Solution 1 ----------

Empty Substitution.

D2 = of/add (enat z) (enat (s z)) (of/nat z) (of/nat (s z)).

Twelf finds derivations of both queries. For the first query, it finds the derivation

D1 = of/str (, a (, b (, c (, a eps)))).

It says that applying function of/str to term str (, a (, b (, c (, a eps)))) returns a

term/derivation of type/judgment “of (estr (a , b , c , a , eps)) string”.

For the second query, it finds the following derivation:

D2 = of/add (enat z) (enat (s z)) (of/nat z) (of/nat (s z)).

Derivation D2 is described as follow:

1. Apply function of/nat to term z to return a term/derivation of “of (enat z) num”.

2. Apply function of/nat to term “enat (s z)” to return a term/derivation of “of (enat (s

z)) num”.

3. Apply of/add to the derivations of “of (enat z) num” and “of (enat (s z)) num” to

return a derivation of “of (add (enat (s z)) (enat z)) num”. The first argument (enat

z) establishes that the third argument should be a term of type “of (enat z) num”; hence,

the type of the third argument of of/add depends on the first argument passed to of/add.

The situation is analogous for the second and fourth arguments of function of/add.

Twelf could not derive the proof of the preservation theorem, but it could let you know if your

proof was incorrect. For example, lines 23–27 in preservation.elf prove preservation for the

typing-evaluation rule combination (T.4, D.1). If those lines were removed, Twelf would return the

following error output:
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preservation.elf:69.8-69.11 Error:

Coverage error --- missing cases:

{E1:exp} {E2:exp} {E3:exp} {O1:of (add E1 E2) num} {S1:step E1 E3}

{O2:of (add E3 E2) num}

|- preservation O1 (step/add1 S1) O2.

The error message lets us know that we forgot to prove preservation for the case when we could

derive “of (add E1 E2) num” and “step (add E1 E2) (add E3 E2))” (+(e1; e2) 7→ +(e3; e2)).

In this case, judgment “step (add E1 E2) (add E3 E2))” was derived by applying function (in-

ference rule) step/add1 to a derivation (S1) of type “step E1 E3”. To prove preservation for this

case, we would need to produce a derivation of type “of (add E3 E2) num”. This would show

that performing an evaluation step on the left summand of a well-typed add expression would not

change the type of the resulting add expression.

In summary, Twelf can aid with deriving simple judgments and checking that proofs of language

properties are correct. If a proof is not correct, Twelf will let us know that the proof contains a

mistake and provide an error message to help “debug” the proof.

8 Summary

This paper gave an overview of type theory and how it applies to programming languages. It

explained how important aspects of programming languages can be specified precisely and formally.

It showed how properties of programming languages can be proven. It described how computers can

aid in formal verification of properties. Lastly, it highlighted topics that the reader can investigate

further to better understand foundations underlying programming languages.
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