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Motivation

Proving language properties are important.
I Rule out certain errors (e.g. assuming wrong number of bytes

for an object).
I Well-defined behavior throughout execution (e.g. no

segmentation fault or accessing wrong parts of memory).
I Publishing.

But proofs are long, error prone, and difficult to validate.
I +20 pages is common for a type safety proof.

John Altidor Twelf Tutorial 2/ 68



Motivation

Proving language properties are important.
I Rule out certain errors (e.g. assuming wrong number of bytes

for an object).
I Well-defined behavior throughout execution (e.g. no

segmentation fault or accessing wrong parts of memory).
I Publishing.

But proofs are long, error prone, and difficult to validate.
I +20 pages is common for a type safety proof.

John Altidor Twelf Tutorial 2/ 68



Typical Proof Structure

Example taken from type soundness proof of TameFJ calculus.

Lots of steps, lemmas, and opportunities for errors in proofs of
language properties.
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What is a Proof Assistant

Multiple ways of proving theorems with a computer:

Automatic theorem provers find complete proofs on their
own.

I Not all proofs can be derived automatically.

Proof checkers simply verify the proofs they are given.
I These proofs must be specified in an extremely detailed,

low-level form.

Proof assistants are a hybrid of both.
I “Hard steps” of proofs (the ones requiring deep insight) are

provided by human.
I “Easy steps” of proofs can be filled in automatically.

(above bullet points taken from UPenn’s Software
Foundations course slides)
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Twelf Proof Assistant

Automated support for deriving proofs and checking proofs
of language properties.

Implementation of the LF calculus
(calculus for reasoning about deductive systems).

Alternatives: Coq, Isabelle, Agda, etc.

Presenting Example Twelf Encoding of Minilang.
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Constructive Logic

Twelf is a constructive (not classical) proof assistant.

Proposition is true iff there exists a proof of it.

Law of excluded middle not assumed: P ∨ ¬P.
I Proving P ∨ ¬P requires either:

I Proof of P OR Proof of ¬P.

I No case-split on undecidable propositions. Not allowed:
I If halts(TuringMachine) then proof of A else proof of B.

No choice operator (εx .P(x) proposed by David Hilbert).
I ln(x) = u such that x = eu.
I Definition in Isabelle/HOL:

definition ln :: real => real where

ln x = THE u. exp u = x.

In Twelf: Writing a proof = Writing a program.
I Proofs are programs.
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Twelf Live Server

Lecture will involve in-class exercises.

Can try Twelf without installation.

Twelf Live Server:

http://twelf.org/live/

Links to starter code of examples will be provided.
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Kinds: Category of Types

Three levels of objects in Twelf:
I Kinds are at highest level.
I Types are at second level.
I Terms are at lowest level.

Each type is of a certain kind.
(Twelf syntax: “someType : someKind”)

Each term is of a certain type.
(Twelf syntax: “someTerm : someType”)

Twelf overloads languages constructs with same syntax.
(elegant but confusing too)

Contrived examples:
I Term [1, 2, 3] is of type ArrayInt.
I Type ArrayInt is of kind Array.

The kind type is a pre-defined kind in Twelf.
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Functions

Twelf supports defining functions:
int : type. one : int.

plusOne : int -> int.

I plusOne is a function term.
I plusOne takes in a term of type int and returns a term of

type int.
I The type of function term plusOne is int -> int.
I (plusOne one) has type int.

Functions taking in multiple arguments are represented using
their curried form:

plus: int -> int -> int.

I int -> int -> int is curried form of (int, int) -> int.
I int -> int -> int = int -> (int -> int).
I (plus one) has type int -> int.
I (plus one one) has type int.
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Functions Returning Types

Recall that type is a kind (type of types).

Functions can also return types:

equalsOne : int -> type.

I equalsOne is a function term.
I equalsOne takes in a term of type int and returns a type of

kind type.
I The type of function term equalsOne is int -> type.
I (equalsOne one) is a type of kind type.

oneIsOne : (equalsOne one).

I Defines a new term oneIsOne of type (equalsOne one).

A function type is a kind if its return type is also a kind.
I int -> type is a kind.
I int -> (int -> type) is a kind.
I int -> int -> type = int -> (int -> type) is a kind.

type is not allowed on the left-hand side of arrow (->).
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Minilang Syntax in Twelf

The object language is Minilang (the object of study).

Syntactic categories encoded w/ object types (defined types).
I exp : type.
I Defines type exp of kind type.
I exp represents syntactic category e.
I Terms in the grammar of e have type exp.

Grammar productions encoded w/ functions between
syntactic categories.

I add : exp -> exp -> exp.
I Expression e : : = +(e1; e2)
I add takes in two arguments.
I exp -> exp -> exp is curried form of (exp, exp) -> exp.
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Terms w/ variables using Higher-Order Abstract Syntax
(HOAS)

Abstract syntax from earlier slides is first-order abstract
syntax (FOAS).

I Each AST has form o(t1, t2, . . . , tn), where o is operator and
t1, . . . , tn are ASTs. Example:

I +(num[3]; num[4])
I add (enat 3) (enat 4)

ASTs in Higher-Order Abstract Syntax (HOAS):

Each ti in o(t1, t2, . . . , tn) has form:

x1, x2, . . . xk .t

t is a FO-AST.

Each xj is a variable bound in t.

k ≥ 0; if k = 0, then no variable is declared.
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HOAS encoding of let expression

First, let expression in FOAS:

let(x; e1; e2)

let expression in HOAS:

let(e1; x .e2)

“x .e2” captures that x is bound in e2.

HOAS lets us know where variables are being bound.

let(3; x.+(x; 4)) ≡ let(3; y.+(y; 4))

Two preceding terms above are alpha-equivalent.
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Higher-Order Terms are Functions

Functions are really terms with holes/unknowns: (3 + •).

Holes are represented by variables.

Holes filled in by applying (terms w/ holes)/functions.

Holes abstract details.

“x .e” represented by lambda abstraction “λx : τ.e”.

Twelf’s syntax of “λx : τ.e”: “[x : τ] e”
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let expression in Twelf HOAS

Twelf type signature of let:

let : exp -> (exp -> exp)︸ ︷︷ ︸
x .e2

-> exp.

Example HOAS term in Twelf:

Concrete Syntax Twelf HOAS

let x = 1 + 2︸ ︷︷ ︸
e1

in x + 3︸ ︷︷ ︸
e2

let (add 1 2)︸ ︷︷ ︸
e1

([x:exp] add x 3)︸ ︷︷ ︸
x.e2

No need to define object (Minilang) variables.

LF variables remove need for object variables.

No need to define substitution (nor requisite theorems) as well.
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Predicates in Twelf

Predicates are defined with type families:
Functions that return types (not terms).

Typing Predicate: e : τ

Twelf Encoding: of : exp -> typ -> type.

Type families return dependent types.
I Types that contain terms (or depend on terms).

Examples:
I 3 is a term of type nat.
I Let Vec be a function that given nat n, Vec(n) returns the

type of n-dimensional vectors.
I Vec(3) is a dependent type representing 3-dimensional

vectors.
I [4, 1, 3] is a term of type Vec(3).
I Vec is a type family because it is a function that returns

dependent types.

John Altidor Twelf Tutorial 16/ 68



Predicates in Twelf

Predicates are defined with type families:
Functions that return types (not terms).

Typing Predicate: e : τ

Twelf Encoding: of : exp -> typ -> type.

Type families return dependent types.
I Types that contain terms (or depend on terms).

Examples:
I 3 is a term of type nat.
I Let Vec be a function that given nat n, Vec(n) returns the

type of n-dimensional vectors.
I Vec(3) is a dependent type representing 3-dimensional

vectors.
I [4, 1, 3] is a term of type Vec(3).
I Vec is a type family because it is a function that returns

dependent types.

John Altidor Twelf Tutorial 16/ 68



Predicates in Twelf

Predicates are defined with type families:
Functions that return types (not terms).

Typing Predicate: e : τ

Twelf Encoding: of : exp -> typ -> type.

Type families return dependent types.
I Types that contain terms (or depend on terms).

Examples:
I 3 is a term of type nat.

I Let Vec be a function that given nat n, Vec(n) returns the
type of n-dimensional vectors.

I Vec(3) is a dependent type representing 3-dimensional
vectors.

I [4, 1, 3] is a term of type Vec(3).
I Vec is a type family because it is a function that returns

dependent types.

John Altidor Twelf Tutorial 16/ 68



Predicates in Twelf

Predicates are defined with type families:
Functions that return types (not terms).

Typing Predicate: e : τ

Twelf Encoding: of : exp -> typ -> type.

Type families return dependent types.
I Types that contain terms (or depend on terms).

Examples:
I 3 is a term of type nat.
I Let Vec be a function that given nat n, Vec(n) returns the

type of n-dimensional vectors.

I Vec(3) is a dependent type representing 3-dimensional
vectors.

I [4, 1, 3] is a term of type Vec(3).
I Vec is a type family because it is a function that returns

dependent types.

John Altidor Twelf Tutorial 16/ 68



Predicates in Twelf

Predicates are defined with type families:
Functions that return types (not terms).

Typing Predicate: e : τ

Twelf Encoding: of : exp -> typ -> type.

Type families return dependent types.
I Types that contain terms (or depend on terms).

Examples:
I 3 is a term of type nat.
I Let Vec be a function that given nat n, Vec(n) returns the

type of n-dimensional vectors.
I Vec(3) is a dependent type representing 3-dimensional

vectors.

I [4, 1, 3] is a term of type Vec(3).
I Vec is a type family because it is a function that returns

dependent types.

John Altidor Twelf Tutorial 16/ 68



Predicates in Twelf

Predicates are defined with type families:
Functions that return types (not terms).

Typing Predicate: e : τ

Twelf Encoding: of : exp -> typ -> type.

Type families return dependent types.
I Types that contain terms (or depend on terms).

Examples:
I 3 is a term of type nat.
I Let Vec be a function that given nat n, Vec(n) returns the

type of n-dimensional vectors.
I Vec(3) is a dependent type representing 3-dimensional

vectors.
I [4, 1, 3] is a term of type Vec(3).

I Vec is a type family because it is a function that returns
dependent types.

John Altidor Twelf Tutorial 16/ 68



Predicates in Twelf

Predicates are defined with type families:
Functions that return types (not terms).

Typing Predicate: e : τ

Twelf Encoding: of : exp -> typ -> type.

Type families return dependent types.
I Types that contain terms (or depend on terms).

Examples:
I 3 is a term of type nat.
I Let Vec be a function that given nat n, Vec(n) returns the

type of n-dimensional vectors.
I Vec(3) is a dependent type representing 3-dimensional

vectors.
I [4, 1, 3] is a term of type Vec(3).
I Vec is a type family because it is a function that returns

dependent types.

John Altidor Twelf Tutorial 16/ 68



Judgments are Dependent Types

Judgments/Propositions (instantiations of predicates)
represented by dependent types.

Judgment z : num represented by type (of (enat z) num).

Dependent type (of e τ) represents judgment “e : τ”.

Derivation/Proof of “e : τ” represented by term of type
(of e τ).

Curry-Howard Correspondence:
Proofs are terms.
Propositions/Judgments are types.
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Pi-Abstractions

Function/Lambda Abstraction “λx : S .e” of type S → T :
I Takes in a term s of type S .
I Returns a term of type T .

Function/Pi-abstraction of type pi-type Πx : S .T :
I Takes in a term s of type S .
I Returns a term of type [s/x ]T .

If x /∈ fv(T ), then Πx : S .T ≡ S → T .

If x ∈ fv(T ), then Πx : S .T returns term of a dependent type.

Twelf Syntax for S → T :
S -> T

Twelf Syntax for Πx : S .T :
{x:S} T
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If x /∈ fv(T ), then Πx : S .T ≡ S → T .

If x ∈ fv(T ), then Πx : S .T returns term of a dependent type.

Twelf Syntax for S → T :
S -> T

Twelf Syntax for Πx : S .T :
{x:S} T
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Inference Rules are Functions

num[n] : num
T.1

of/nat : {N:nat} of (enat N) num.

Twelf Convention:
I Constants start with lower-case letters.
I Variables/parameters start with upper-case letters.

(of/nat z) 6= (of (enat z) num).

Function of/nat returns terms not types.

Function of returns types.

(of/nat z) = term of type (of (enat z) num).
I Example legal assignment:

y : (of (enat z) num) = (of/nat z).

(of/nat z) is a derivation/term of judgment z : num
represented by type (of (enat z) num).
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Premises are Inputs

e1: num e2: num

+(e1; e2): num
T.4

Twelf Encoding:
of/add : of (add E1 E2) num

<- of E1 num

<- of E2 num.

Given a proof of (of E2 num) and

Given a proof of (of E1 num)

of/add returns proof of (of (add E1 E2) num)
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Implicit and explicit parameters

of/nat: {N:nat} of (enat N) num.

Parameter N is explicit in the above signature.

Explicit parameters must be specified in function
applications.

D : of (enat z) num = of/nat z.

of/nat: of (enat N) num.

Parameter N is implicit in the above signature.

Implicit parameters cannot be specified by programmer in
function applications.

D : of (enat z) num = of/nat.

Twelf figures out from the context (type of left-hand side of
assignment) that z is the implicit parameter that of/nat
should be applied to.
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First-Order Quantification Only

Can only quantify over first-order terms.

Allowed:
I add : exp -> exp -> exp.
I let : exp -> (exp -> exp) -> exp.

I A higher-order term is a function, where one of its inputs is
also a function.

Not allowed:
I quantifyTypes : exp -> type -> exp.
I allIsTrue : {Prop:type} Prop.

The kind type categorizes Twelf types.

No type polymorphism implies no general logical connectives.

Not allowed:
conjunction :

{P:type} {Q:type} P -> Q -> (and P Q).
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Predicativity

Different term levels used to restrict quantification.
I Twelf terms are first-order terms; e.g., (s z).
I Twelf types are second-order terms; e.g., nat.
I Twelf kinds are third-order terms; e.g., type.

Twelf only allows predicative definitions:
I Cannot apply term to itself. (Cannot quantify over oneself.)
I No term has itself as type. (Not allowed: typ : typ.)
I Disallows Russell’s paradox:

Let H = {x | x /∈ x}. Then H ∈ H ⇐⇒ H /∈ H︸ ︷︷ ︸
False

.

Helps Twelf avoid logical inconsistency
(i.e. proving false/uninhabited type).

False implies any proposition (including false ones).

False/uninhabited types used for constructive proofs by
contradiction.
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Laboratory

Create language of numbers with subtyping in Twelf.

Category Item Abstract Concrete
Terms e : : = zero 0

| pi π
| img

√
−1

Types t : : = number num
| real real
| complex complex
| int int
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More Exercises

Subtyping Rules (not all):

complex <: num real <: num int <: real

Typing Rules (not all):

0 : int π : real
√
−1 : complex

Define reflexive and transitive rules for subtyping.

Define subsumption rule for typing judgment.

Prove 0 : num.
I Fill in the blank below:
I D : (of zero number) = •
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Hypothetical Judgments in Twelf

What happened to typing context Γ?

Hypothetical Judgments:
Judgments made under the assumption of other judgments.

Encoded w/ higher-order types:
Function types where one of the inputs is also a function type.

Input function types represent hypothetical assumptions.

Similar to higher-order terms.
(Another application of HOAS)

Γ does not need to be defined.
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Typing let expression in Twelf HOAS

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2
Γ ` let(x; e1; e2): τ2

T.6

Twelf Encoding:
of/let : ({x: exp} of x T1 -> of (E2 x) T2) ->

of E1 T1 ->

of (let E1 ([x] E2 x)) T2.

First, a Twelf coding convention:
Return type (of (let E1 ([x] E2 x)) T2) could be
replaced with (of (let E1 E2) T2).

E2 in both cases is of type (exp -> exp).

([x] E2 x) used for readability: # of inputs explicit.

([x] E2 x) is called the eta-expansion of E2.
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of/let’s first input type

Let f be a function of of/let’s first input type:
({x: exp} of x T1 -> of (E2 x) T2).

That type models hypothetical judgment: Γ, x : τ1 ` e2 : τ2.

f ’s first input is an exp term bound to LF variable x.

f ’s second input is a term dx of type (of x T1).
dx = proof that f ’s first input has type T1

f ’s output is a term of type (of (E2 x) T2):
a proof that E2 instantiated with exp term x has type T2.

dx of type (of x T1) can be used in the definition of f to
return a proof/term of type (of (E2 x) T2).

The ability to use a proof (dx) of type (of x T1) to derive a
proof of type (of (E2 x) T2) simulates the ability to use an
assumption x : τ1 to prove e2 : τ2.
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Exercise Applying Hypothetical Judgment

Derive the judgment ` let x be 1 in x + 0 : num in Twelf.

Twelf encoding of above judgment:
of (let (enat (s z)) ([x:exp] add x (enat z))) num.

Recall important signatures (displaying implicit parameters):

of/let : {T1:typ} {E2:exp -> exp} {T2:typ} {E1:exp}

({x:exp} of x T1 -> of (E2 x) T2) -> of E1 T1

-> of (let E1 ([x:exp] E2 x)) T2.

of/nat : {N:nat} of (enat N) num.

of/add : {E2:exp} {E1:exp}

of E2 num -> of E1 num -> of (add E1 E2) num.
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Solution to Previous Exercise

Derive the judgment ` let x be 1 in x + 0 : num in Twelf.

Twelf encoding of above judgment:
of (let (enat (s z)) ([x:exp] add x (enat z))) num.

Recall important signatures (without implicit parameters):

of/let : ({x:exp} of x T1 -> of (E2 x) T2) ->

of E1 T1 -> of (let E1 ([x:exp] E2 x)) T2.

of/nat : of (enat N) num.

of/add :

of E2 num -> of E1 num -> of (add E1 E2) num.

Twelf proof of above judgment:

of/let

([x:exp] [dx:of x num] of/add (of/nat z) dx).

(of/nat (s z))
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Relations w/ Inputs and Outputs (Modes)

Inputs/Outputs defined with %mode declaration.
of : exp -> typ -> type.

%mode of +E -T.

Inputs marked with +.

Outputs marked with -.

Outputs can be derived automatically using Twelf’s logic
programming engine (example later).

Not all relations required modes.

Modes are necessary for specifying theorems.

Modes used also for checking proofs of theorems.

Only ground terms may be applied to relations w/ modes in
rules (details later).
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Backward Arrow vs. Forward Arrow

Output terms must be ground given ground input terms.
I Ground terms do not contain free variables.
I Output terms are fixed (ground) wrt (ground) inputs.

Forward “->” reflects order that premises are passed to
rules/functions and makes proofs more natural.
Backward “<-” reflects order of resolving ground terms.

Order of args allowed by Twelf:
of/let : ({x: exp} of x T1 -> of (E2 x) T2) ->

of E1 T1 ->

of (let E1 ([x] E2 x)) T2.

Order of args that causes error:
of/let : of E1 T1 ->

({x: exp} of x T1 -> of (E2 x) T2) ->

of (let E1 ([x] E2 x)) T2.

Error message:
Occurrence of variable T1 in output (-) argument

not necessarily ground
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Universally-Quantified Inputs

Terms in input positions of return type are
universally-quantified inputs to function.

right1 : of E1 num -> of (add E1 (enat z)) num.

Terms in input position of return type:
(add E1 (enat z)).

Tokens starting with capital letters are assumed by Twelf to
be variables in type: E1.

Free variables in input position of return type, E1, are inferred
by Twelf to be universally-quantified inputs to function
right1.

I Only these terms are allowed to be universal inputs to function
right1.
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Resolving Ground Terms

All terms must be ground terms:
constants or terms without free variables
assuming that input terms (from return type) are also
ground (do not contain free variables).

Next Step:
Check that input terms in type preceding return type are
ground:

right1 : of E1 num -> of (add E1 (enat z)) num.

E1 in premise type (of E1 num) is ground wrt E1 in return
type because they are the same.

num in premise type (of E1 num) is ground wrt return type
because num is a constant.
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E1 in premise type (of E1 num) is ground wrt E1 in return
type because they are the same.

num in premise type (of E1 num) is ground wrt return type
because num is a constant.
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Non-ground Term in Premise Causing Error

wrong1 : of E2 num -> of (add E1 (enat z)) num.

E2 term not coming from conclusion (return type).
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Ground Term From Output

Output terms resulting from grounded input terms are also
ground.

Second argument of the of relation is an output argument.

right2 : of E T -> of (add E (enat z)) T.

Term T is computed/result of premise/recursive call
(of E T).
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Non-ground Term in Conclusion Causing Error

Output term in conclusion not grounded:

wrong2 : of E T1 -> of (add E (enat z)) T2.

Output term T2 is universally quantified instead of a
grounded result of the input term.
This violates the %mode declaration of the of relation.
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Previous Examples for Grounds Checking

right1 : of E1 num -> of (add E1 (enat z)) num.

wrong1 : of E2 num -> of (add E1 (enat z)) num.

right2 : of E T -> of (add E (enat z)) T.

wrong2 : of E T1 -> of (add E (enat z)) T2.

John Altidor Twelf Tutorial 38/ 68



Decidable Predicate Definitions

Decidable Predicate Definition or Algorithmic Definition:
Definition of predicate that gives an algorithm for deciding
predicate thats halts on all inputs within a finite number of
steps.

Constructive Logic Requirement:
Proposition is true iff there exists a proof of it.

For every true proposition/instance of predicate, algorithm
finds a proof of proposition.

For every false proposition of predicate, algorithm determines
no proof exists.
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Termination

%terminates checks a program succeeds or fails in a finite
number of steps given ground inputs.

Modes with termination ensure decidable definitions.

Termination not guaranteed with transitive rule.

subtype : typ -> typ -> type.

%mode subtype +T1 -T2.

subtype/int/rea : subtype int real.

subtype/rea/num : subtype real number.

subtype/num/num : subtype number number.

subtype/trans:

subtype T1 T3 <- subtype T1 T2 <- subtype T2 T3.

%terminates T (subtype T _).

Error: Termination violation: ---> (T1) < (T1)

First input to subtype not smaller in premise/recursive call.
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Syntax-Directed Definition

Syntax-Directed Definition: For each syntactic form of
input, there is at most one applicable rule.

Syntax of input term tells us which rule to use.
(or if no rule applies)

Each true proposition of a syntax-directed predicate has
exactly one unique derivation.

Only one way to derive +(5; 3) : num.

5 : num
of/num

3 : num
of/num

+(5; 3): num
of/add

No need for exhaustive proof search with syntax-directed
predicates.
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Checking Syntax-Directed

Check that rules of relation/type family (e.g. subtype) are
syntax-directed by passing relation to %unique declaration.

%unique checks if output arguments of relation are uniquely
determined by input arguments.

%unique also checks if two rules overlap or can derive the
same judgment.

subtype : typ -> typ -> type.

subtype/rea/num : subtype real number.

subtype/num/num : subtype number number.

subtype/trans:

subtype T1 T3 <- subtype T1 T2 <- subtype T2 T3.

%worlds () (subtype _ _).

%unique subtype +T1 +T2.

Error: subtype/rea/num and subtype/trans overlap

Both rules could be used to derive subtype real number.
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Automatic Proof Derivation

Twelf can derive (search) for proofs:

%solve D1 :

of (estr (a , b , c , a , eps)) string.

Twelf will save proof term in D1.
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Printing Proof Terms

To print all (implicit) terms in proofs:

From Twelf Server:
“set Print.implicit true”

From ML (SML) Prompt:
“Twelf.Print.implicit := true”

Then just execute “Check File”:
Emacs Key Sequence: ^C ^S
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Proof Term in Sample Output

loadFile test_typing.elf

[Opening file test_typing.elf]

%solve

of (estr (, a (, b (, c (, a eps))))) string.

OK

D1 : of (estr (, a (, b (, c (, a eps))))) string

= of/str (, a (, b (, c (, a eps)))).
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Twelf Theorems

Preservation Theorem:
If (of E T) and (step E E’), then (of E’ T).

Twelf allows expressing ∀∃-type properties.

Preservation, re-formulated:
I For every derivation of (of E T) and (step E E’),
I there exists at least one derivation of (of E’ T).

%theorem

preservation :

forall* {E} {E’} {T}
forall {O:of E T} {S:step E E’}
exists {O’:of E’ T}
true.

Verbose syntax above.
Desugared, concise alternative on next slide.
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Theorems are Function Types w/ Specified Inputs/Outputs

Preservation theorem is a function returning types
(type family):
preservation:

of E T -> step E E’ -> of E’ T -> type.

Premises are inputs. Conclusions are outputs.

%mode preservation +O +S -O’.

To prove preservation theorem, need to show preservation
is a total relation on all possible inputs.

I For each possible derivation of premises (inputs), need at least
one derivation of conclusion (output).

John Altidor Twelf Tutorial 47/ 68



Proofs of Theorems

Proofs of theorems are total relations over inputs.

Proving theorem
= Constructing functions for each case:

I For each constructor of term to perform structural induction
on.

Note:
No case-split or pattern match construct in Twelf.

I This is the reason why multiple functions are required to
prove theorem for multiple cases.

I Results in smaller proof terms but more of them.
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Preservation Proof - Addition Case 2 - Informal

Case: (T.4, D.1)

e1: num e2: num

+(e1; e2): num
T.4

e1 7→ e ′1
+(e1; e2) 7→ +(e′1; e2)

D.1

We assume preservation holds for subexpressions. Hence, by the
inductive hypothesis, e1: num and e1 7→ e ′1 implies e ′1: num.
Rule T.4 gives us:

e′1: num e2: num

+(e′1; e2): num
T.4

John Altidor Twelf Tutorial 49/ 68



Twelf Proof of Addition Case 2

of/add :

of (add E1 E2) num <- of E1 num <- of E2 num.

- :

{E1-num : of E1 num }
{E2-num : of E2 num }
{E1=>E1’ : step E1 E1’ }
{E1’-num : of E1’ num }
preservation E1-num E1=>E1’ E1’-num ->

preservation

((of/add E2-num E1-num) : (of (add E1 E2) num))

((step/add1 E1=>E1’) :

(step (add E1 E2) (add E1’ E2)))

((of/add E2-num E1’-num) : (of (add E1’ E2) num)).
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Proof Case without Explicit Types

- : preservation

(of/add E2-num E1-num)

(step/add1 E1=>E1’)

(of/add E2-num E1’-num)

<- preservation E1-num E1=>E1’ E1’-num.

Types of terms in proofs: usually not required to specify.

Allowed to be manually specified.

Output from Twelf server contains (some) inferred types.
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Applying Inductive Hypothesis

- : preservation

(of/add E2-num E1-num)

(step/add1 E1=>E1’)

(of/add E2-num E1’-num)

<- preservation E1-num E1=>E1’ E1’-num.

Applying inductive hypothesis = recursive call.
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Checking Proof Totality

After proving all cases, ask Twelf to check we covered all
cases.

%worlds () (preservation _ _ _).

%total E-T (preservation E-T _ _).

%total E-T tells Twelf to check proof of totality by
structural induction on typing derivation E-T.

Details of %world declaration later.
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Missing Case

If we forget to prove a case, %total command will fail.

Twelf prints error message to help user “debug” proof:

preservation.elf:69.8-69.11 Error:

Coverage error --- missing cases:

{E1:exp} {E2:exp} {E3:exp}
{O1:of (add E1 E2) num} {S1:step E1 E3}
{O2:of (add E3 E2) num}

|- preservation O1 (step/add1 S1) O2.

Forgot the case where we could derive:
I (of (add E1 E2) num)
I (step (add E1 E2) (add E3 E2)))

Need to construct proof of (of (add E3 E2) num).
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Assuming What Needs To Be Proven

Cannot prove theorem by just assuming conclusion of theorem
holds.

Also, cannot assume propositions not derived from premises of
theorem.

Such a proof will contain a non-ground term.
I %mode declarations used to check proofs.
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Recall Valid Proof of Case

- : {E1-num : of E1 num}
{E2-num : of E2 num}
{E1=>E1’ : step E1 E1’}
{E1’-num : of E1’ num}
preservation E1-num E1=>E1’ E1’-num

-> preservation (of/add E2-num E1-num)

(step/add1 E1=>E1’)

(of/add E2-num E1’-num).
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Invalid Proof of Case

- : {E1-num : of E1 num }
{E2-num : of E2 num }
{E1=>E1’ : step E1 E1’ }
{E1’-num : of E1’ num }
preservation (of/add E2-num E1-num)

(step/add1 E1=>E1’)

(of/add E2-num E1’-num).

Proof above just assumes of E1’ num, which is not one of
the assumptions for the case.

E1’-num is not an input term in the conclusion (third)
argument of preservation.

E1’-num is not an output term derived from ground terms.

Twelf reports error for function above.
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Checking Entire Proofs of Theorems

Twelf checks proofs of theorems by verifying three key
aspects:

I Type checking – Proof of correct proposition
I Grounds checking – Valid assumptions
I Coverage checking – Proved all cases of theorem

Next few slides describes Twelf’s coverage checking of proofs
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Specifying Worlds – Possible Inputs

To check totality of function/theorem, need to define all
possible inputs or worlds.

I World = Set of terms of a type (inhabitants of a type)

Example world of natural numbers:
nat : type.

z : nat.

s : nat -> nat.

%worlds () (nat).

No term of type nat containing LF variables.

No such nat of form (s x), where x of variable of type nat.
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Terms Containing Binders

Let expression contains binders.
add : exp -> exp -> exp.

let : exp -> (exp -> exp) -> exp.

%worlds () (exp).

Error message:
syntax.elf:38.15-38.25 Error:

While checking constant let:

World violation for family exp: { :exp} </: 1

Need to tell Twelf about possible variables that can arise from
rules.
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Blocks

Blocks: Patterns describing fragment of contexts.

Update addressing previous error:
add : exp -> exp -> exp.

let : exp -> (exp -> exp) -> exp.

%block exp-block : block {x:exp}.
%worlds (exp-block) (exp).

Informs Twelf that terms of type exp can contain binders of
type exp.

Worlds can take in multiple blocks. Syntax:
%worlds (block1 | block2 | . . . | blockN) (exp).
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Worlds for Relations w/ Outputs

Specifying world requires specifying how variables are
quantified (universal inputs or ground outputs).

of : exp -> typ -> type.

%mode of +E -T.

...

of/let : of (let E1 ([x] E2 x)) T2

<- of E1 T1

<- ({x: exp} of x T1 -> of (E2 x) T2).

%block of-block :

some {T:typ} block {x: exp}{_: of x T}.
%worlds (of-block) (of _ _).

Number of args specified by pattern in %worlds declaration:
(of )
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Checking Proof Totality

After defining the worlds of all inputs to a
theorem/function type, we can ask Twelf to
check that the proof/function is total:
defined over the world.

%worlds () (preservation ).

%total E-T (preservation E-T ).

%total E-T tells Twelf to check proof of totality by
structural induction on typing derivation E-T.

Twelf checks proofs of theorems by:
I Type checking – Proof of correct proposition
I Grounds checking – Valid assumptions
I Coverage checking – Proved all cases of theorem
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Totality Proof Automation

Ask Twelf to derive proof for all cases of theorem:
%prove 3 E-T (preservation E-T ).

I by structural induction on typing derivation E-T
I 3 is bound on the size of proof terms.

Twelf fails to find proof of progress theorem because it
requires nested case analysis.

I Need extra theorems for sub-cases (no case-split construct).
I See Twelf page on Output Factoring for more details:

http://twelf.org/wiki/Output_factoring
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My Review of Twelf: The Good

Language Simplicity: Fewer language constructs
I Functions encode many language elements

(e.g., grammar, judgments, theorems, etc.)

Good tool to start with for learning about proof assistants
because of language simplicity and less syntactic sugar
(my opinion).

Language support (HOAS) for variable binding
I Do not need to define substitution and prove substitution

lemmas (sometimes).

Language support for context-sensitive propositions
(hypothetical judgments).

I Do not need to define context of judgments and related
lemmas (e.g. weakening) (sometimes).
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My Review of Twelf: The Bad

Language sometimes too simple
I Missing support for frequent use-cases

(e.g., nested case analysis, no case-split construct).

Less verbosity can lead to cryptic code:
Intent and meaning of code not clear without significant
background:

I No text suggesting this is a proof case:

- : preservation (of/len ) (step/lenV ) of/nat.

I No text suggesting this checks a proof of a theorem:

%worlds () (preservation ).

%total E-T (preservation E-T ).

Error messages could be improved
(e.g. missing cases messages).

I Type annotations of function applications and defined names
desired.
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My Review of Twelf: The Bad (cont.)

No support for stepping through proof instead of just reading
proof trees.

Lack of automation: Many proofs require manual specification
(e.g. proofs requiring nested case analysis).

No libraries.
I No standard library
I No import statements – All code must be included

(repeat definition of nat for every project using them)

No polymorphism
I Separate definitions for (int list), (str list), etc.
I Each type needs its own definition of equality.

Many contexts require explicit definition (HOAS not always
sufficient).
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Summary

Twelf is a proof assistant tool for checking and deriving proofs
of properties of languages and deductive logics.

A tool for language design and implementation.

Imposes healthy reality and sanity check on language designs.

Exposes, and helps correct, subtle design errors early in the
process.
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