Twelf Tutorial
 Twelf Encoding of Minilang

John Altidor

Motivation

- Proving language properties are important.
- Rule out certain errors (e.g. assuming wrong number of bytes for an object).
- Well-defined behavior throughout execution (e.g. no segmentation fault or accessing wrong parts of memory).
- Publishing.

Motivation

- Proving language properties are important.
- Rule out certain errors (e.g. assuming wrong number of bytes for an object).
- Well-defined behavior throughout execution (e.g. no segmentation fault or accessing wrong parts of memory).
- Publishing.
- But proofs are long, error prone, and difficult to validate.
- +20 pages is common for a type safety proof.

Typical Proof Structure

- Example taken from type soundness proof of TameFJ calculus.

Lemma 33 (Inversion Lemma (method invocation)). If:
a. $\quad \Delta ; \Gamma \vdash \mathrm{e} .\langle\overline{\mathrm{P}}\rangle \mathrm{m}(\overline{\mathrm{e}}): \mathrm{T} \mid \Delta^{\prime}$
b. $\quad \emptyset \vdash \triangle \mathrm{OK}$
c. $\Delta \vdash \Delta^{\prime} \mathrm{OK}$
d. $\quad \forall \mathrm{x} \in \operatorname{dom}(\Gamma): \Delta \vdash \Gamma(\mathrm{x})$ OK
then:
there exists Δ_{n}
where:
$\Delta^{\prime}, \Delta_{n}=\Delta^{\prime \prime}, \bar{\Delta}$
$\Delta \vdash \Delta^{\prime}, \Delta_{n}$ OK
$\Delta ; \Gamma \vdash \mathrm{e}: \exists \Delta^{\prime \prime} . \mathrm{N} \mid \emptyset$
$m T y p e(\mathrm{~m}, \mathrm{~N})=\langle\overline{\mathrm{Y} \triangleleft \mathrm{B}}>\mathrm{U} \rightarrow \mathrm{U}$
$\Delta ; \Gamma \vdash \mathrm{e}: \exists \Delta . \mathrm{R} \mid \emptyset$
match($\operatorname{sift}(\mathrm{R}, \mathrm{U}, \mathrm{Y}), \mathrm{P}, \mathrm{Y}, \mathrm{T})$
$\Delta \vdash \overline{\mathrm{P}}$ OK
$\Delta, \Delta^{\prime \prime}, \bar{\Delta} \vdash \overline{\mathrm{T}<:[\overline{\mathrm{T}} / \mathrm{Y}] \mathrm{B}}$
$\Delta, \Delta^{\prime \prime}, \bar{\Delta} \vdash \overline{\exists \emptyset \cdot \mathrm{R}<:[\overline{\mathrm{T} / \mathrm{Y}}] \mathrm{U}}$
$\Delta, \Delta^{\prime \prime}, \Delta_{n} \vdash[\overline{\mathrm{~T} / \mathrm{Y}}] \mathrm{U}<: \mathrm{T}$

Case 1 (T-Invk)

1. $\Delta^{\prime}=\Delta^{\prime \prime}, \bar{\Delta}$
2. $\mathrm{T}=[\overline{\mathrm{T} / \mathrm{Y}}] \mathrm{U}$
3. $\Delta ; \Gamma \vdash \mathrm{e}: \exists \Delta^{\prime \prime} . \mathrm{N} \mid \emptyset$
4. $\quad m T y p e(\mathbb{m}, \mathrm{~N})=\langle\overline{\mathrm{Y}} \triangleleft \mathrm{B}\rangle \overline{\mathrm{U}} \rightarrow \mathrm{U}$
5. $\Delta ; \Gamma \vdash$ е: $\exists \Delta . \mathrm{R} \mid \emptyset$
6. $\quad \operatorname{match}(\operatorname{sift}(\overline{\mathrm{R}}, \mathrm{U}, \mathrm{Y}), \mathrm{P}, \mathrm{Y}, \mathrm{T})$
by premises T-Invk
7. $\Delta \vdash \overline{\mathrm{P}} \mathrm{OK}$
8. $\Delta, \Delta^{\prime \prime}, \bar{\Delta} \vdash \overline{\mathrm{T}<:[\overline{\mathrm{T} / \mathrm{Y}}] \mathrm{B}}$
9. $\Delta, \Delta^{\prime \prime}, \bar{\Delta} \vdash \overline{\exists \emptyset . \mathrm{R}<:[\overline{\mathrm{T} / \mathrm{Y}}] \mathrm{U}}$
10. let $\Delta_{n}=\emptyset$
11. $\Delta \vdash \exists \Delta^{\prime \prime}$. N ок by $3, \mathbf{b}$, d, lemma 30
12. $\Delta \vdash \Delta^{\prime \prime} \mathrm{OK}$
13. $\Delta \vdash \exists \Delta$. R ОК
14. $\Delta \vdash \bar{\Delta} \mathrm{OK}$
15. $\operatorname{dom}\left(\Delta^{\prime \prime}\right) \cap \operatorname{dom}(\bar{\Delta})=\emptyset$
16. $\Delta \vdash \Delta^{\prime \prime}, \bar{\Delta} \mathrm{OK}$
17. done
by 11, def F-Exist by $\mathbf{5}, \mathbf{b}, \mathbf{d}$, lemma 30 by 13, def F-ExisT by 3, 5, Barendregt by 12, 14, 15, lemma 14 by $10,1,16,3,4,5$, 6, 7, 8, 9, 2, reflexivity

Proof by structural induction on the derivation of $\Delta ; \Gamma \vdash \mathrm{e} .\langle\overline{\mathrm{P}}>\mathrm{m}(\overline{\mathrm{e}}): \mathrm{T}| \Delta^{\prime}$ with a case analysis on the last step:

■ Lots of steps, lemmas, and opportunities for errors in proofs of language properties.

What is a Proof Assistant

Multiple ways of proving theorems with a computer:

- Automatic theorem provers find complete proofs on their own.
- Not all proofs can be derived automatically.

What is a Proof Assistant

Multiple ways of proving theorems with a computer:

- Automatic theorem provers find complete proofs on their own.
- Not all proofs can be derived automatically.

■ Proof checkers simply verify the proofs they are given.

- These proofs must be specified in an extremely detailed, low-level form.

What is a Proof Assistant

Multiple ways of proving theorems with a computer:

- Automatic theorem provers find complete proofs on their own.
- Not all proofs can be derived automatically.

■ Proof checkers simply verify the proofs they are given.

- These proofs must be specified in an extremely detailed, low-level form.
■ Proof assistants are a hybrid of both.
- "Hard steps" of proofs (the ones requiring deep insight) are provided by human.
- "Easy steps" of proofs can be filled in automatically.
- (above bullet points taken from UPenn's Software Foundations course slides)

Twelf Proof Assistant

- Automated support for deriving proofs and checking proofs of language properties.
- Implementation of the LF calculus
(calculus for reasoning about deductive systems).
- Alternatives: Coq, Isabelle, Agda, etc.
- Presenting Example Twelf Encoding of Minilang.

Constructive Logic

- Twelf is a constructive (not classical) proof assistant.
- Proposition is true iff there exists a proof of it.

■ Law of excluded middle not assumed: $P \vee \neg P$.

- Proving $P \vee \neg P$ requires either:
- Proof of P OR Proof of $\neg P$.

Constructive Logic

- Twelf is a constructive (not classical) proof assistant.
- Proposition is true iff there exists a proof of it.

■ Law of excluded middle not assumed: $P \vee \neg P$.

- Proving $P \vee \neg P$ requires either:
- Proof of P OR Proof of $\neg P$.
- No case-split on undecidable propositions. Not allowed:
- If halts(TuringMachine) then proof of A else proof of B.

Constructive Logic

- Twelf is a constructive (not classical) proof assistant.
- Proposition is true iff there exists a proof of it.

■ Law of excluded middle not assumed: $P \vee \neg P$.

- Proving $P \vee \neg P$ requires either:
- Proof of P OR Proof of $\neg P$.
- No case-split on undecidable propositions. Not allowed:
- If halts(TuringMachine) then proof of A else proof of B.

■ No choice operator ($\epsilon x . P(x)$ proposed by David Hilbert).

- $\ln (x)=u$ such that $x=e^{u}$.
- Definition in Isabelle/HOL:

```
definition ln :: real => real where
```

$\ln \mathrm{x}=\mathrm{THE} \mathrm{u} . \exp \mathrm{u}=\mathrm{x}$.

Constructive Logic

- Twelf is a constructive (not classical) proof assistant.
- Proposition is true iff there exists a proof of it.

■ Law of excluded middle not assumed: $P \vee \neg P$.

- Proving $P \vee \neg P$ requires either:
- Proof of P OR Proof of $\neg P$.
- No case-split on undecidable propositions. Not allowed:
- If halts(TuringMachine) then proof of A else proof of B.

■ No choice operator ($\epsilon x . P(x)$ proposed by David Hilbert).

- $\ln (x)=u$ such that $x=e^{u}$.
- Definition in Isabelle/HOL:
definition ln :: real => real where $\ln \mathrm{x}=$ THE $\mathrm{u} . \exp \mathrm{u}=\mathrm{x}$.
■ In Twelf: Writing a proof $=$ Writing a program.
- Proofs are programs.

Twelf Live Server

- Lecture will involve in-class exercises.
- Can try Twelf without installation.

■ Twelf Live Server:
http://twelf.org/live/

■ Links to starter code of examples will be provided.

Kinds: Category of Types

■ Three levels of objects in Twelf:

- Kinds are at highest level.
- Types are at second level.
- Terms are at lowest level.

Kinds: Category of Types

- Three levels of objects in Twelf:
- Kinds are at highest level.
- Types are at second level.
- Terms are at lowest level.
- Each type is of a certain kind. (Twelf syntax: "someType : someKind")
- Each term is of a certain type. (Twelf syntax: "someTerm : someType")
- Twelf overloads languages constructs with same syntax. (elegant but confusing too)

Kinds: Category of Types

■ Three levels of objects in Twelf:

- Kinds are at highest level.
- Types are at second level.
- Terms are at lowest level.
- Each type is of a certain kind. (Twelf syntax: "someType : someKind")
- Each term is of a certain type. (Twelf syntax: "someTerm : someType")
■ Twelf overloads languages constructs with same syntax. (elegant but confusing too)
■ Contrived examples:
- Term [1, 2, 3] is of type ArrayInt.
- Type ArrayInt is of kind Array.

Kinds: Category of Types

- Three levels of objects in Twelf:
- Kinds are at highest level.
- Types are at second level.
- Terms are at lowest level.
- Each type is of a certain kind.
(Twelf syntax: "someType : someKind")
- Each term is of a certain type.
(Twelf syntax: "someTerm : someType")
- Twelf overloads languages constructs with same syntax. (elegant but confusing too)
■ Contrived examples:
- Term [1, 2, 3] is of type ArrayInt.
- Type ArrayInt is of kind Array.

■ The kind type is a pre-defined kind in Twelf.

Functions

- Twelf supports defining functions:
int : type. one : int.
plusOne : int -> int.
- plusOne is a function term.
- plusOne takes in a term of type int and returns a term of type int.
- The type of function term plusOne is int -> int.
- (plusOne one) has type int.

Functions

- Twelf supports defining functions:
int : type. one : int.
plusOne : int -> int.
- plusOne is a function term.
- plusOne takes in a term of type int and returns a term of type int.
- The type of function term plusOne is int -> int.
- (plusOne one) has type int.
- Functions taking in multiple arguments are represented using their curried form:

■ plus: int -> int -> int.

- int -> int -> int is curried form of (int, int) -> int.
- int -> int -> int = int -> (int -> int).
- (plus one) has type int $->$ int.
- (plus one one) has type int.

Functions Returning Types

- Recall that type is a kind (type of types).

■ Functions can also return types:
■ equalsOne : int -> type.

- equalsOne is a function term.
- equalsOne takes in a term of type int and returns a type of kind type.
- The type of function term equalsOne is int -> type.
- (equalsOne one) is a type of kind type.

Functions Returning Types

- Recall that type is a kind (type of types).

■ Functions can also return types:
■ equalsOne : int -> type.

- equalsOne is a function term.
- equalsOne takes in a term of type int and returns a type of kind type.
- The type of function term equalsOne is int -> type.
- (equalsOne one) is a type of kind type.

■ oneIsOne : (equalsOne one).

- Defines a new term oneIsOne of type (equalsOne one).

Functions Returning Types

- Recall that type is a kind (type of types).
- Functions can also return types:

■ equalsOne : int -> type.

- equalsOne is a function term.
- equalsOne takes in a term of type int and returns a type of kind type.
- The type of function term equalsOne is int -> type.
- (equalsOne one) is a type of kind type.

■ oneIsOne : (equalsOne one).

- Defines a new term oneIsOne of type (equalsOne one).
- A function type is a kind if its return type is also a kind.
- int -> type is a kind.
- int -> (int -> type) is a kind.
- int -> int $->$ type $=$ int $->$ (int -> type) is a kind.

■ type is not allowed on the left-hand side of arrow ($->$).

Minilang Syntax in Twelf

■ The object language is Minilang (the object of study).
■ Syntactic categories encoded w/ object types (defined types).

- exp : type.
- Defines type exp of kind type.
- exp represents syntactic category e.
- Terms in the grammar of e have type exp.

Minilang Syntax in Twelf

■ The object language is Minilang (the object of study).
■ Syntactic categories encoded w/ object types (defined types).

- exp : type.
- Defines type exp of kind type.
- exp represents syntactic category e.
- Terms in the grammar of e have type exp.

■ Grammar productions encoded w/ functions between syntactic categories.

- add : exp -> exp -> exp.
- Expression e : : $=+\left(e_{1} ; e_{2}\right)$
- add takes in two arguments.
- exp $\rightarrow \exp \rightarrow \exp$ is curried form of (exp, exp) \rightarrow exp.

Terms w/ variables using Higher-Order Abstract Syntax (HOAS)

■ Abstract syntax from earlier slides is first-order abstract syntax (FOAS).

- Each AST has form $o\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, where o is operator and t_{1}, \ldots, t_{n} are ASTs. Example:

Terms w/ variables using Higher-Order Abstract Syntax (HOAS)

■ Abstract syntax from earlier slides is first-order abstract syntax (FOAS).

- Each AST has form $o\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, where o is operator and t_{1}, \ldots, t_{n} are ASTs. Example:
- + (num [3] ; num [4])
- add (enat 3) (enat 4)

Terms w/ variables using Higher-Order Abstract Syntax (HOAS)

■ Abstract syntax from earlier slides is first-order abstract syntax (FOAS).

- Each AST has form $o\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, where o is operator and t_{1}, \ldots, t_{n} are ASTs. Example:
- + (num [3] ; num [4])
- add (enat 3) (enat 4)

■ ASTs in Higher-Order Abstract Syntax (HOAS):
■ Each t_{i} in $o\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ has form:

$$
x_{1}, x_{2}, \ldots x_{k} \cdot t
$$

- t is a FO-AST.
- Each x_{j} is a variable bound in t.

■ $k \geq 0$; if $k=0$, then no variable is declared.

HOAS encoding of let expression

■ First, let expression in FOAS:

$$
\operatorname{let}\left(x ; e_{1} ; e_{2}\right)
$$

HOAS encoding of let expression

■ First, let expression in FOAS:

$$
\operatorname{let}\left(x ; e_{1} ; e_{2}\right)
$$

- let expression in HOAS:

$$
\operatorname{let}\left(e_{1} ; x . e_{2}\right)
$$

- "x. e_{2} " captures that x is bound in e_{2}.

HOAS encoding of let expression

■ First, let expression in FOAS:

$$
\operatorname{let}\left(x ; e_{1} ; e_{2}\right)
$$

- let expression in HOAS:

$$
\operatorname{let}\left(e_{1} ; x . e_{2}\right)
$$

■ "x. e_{2} " captures that x is bound in e_{2}.
■ HOAS lets us know where variables are being bound.

$$
\operatorname{let}(3 ; x .+(x ; 4)) \equiv \operatorname{let}(3 ; y .+(y ; 4))
$$

■ Two preceding terms above are alpha-equivalent.

Higher-Order Terms are Functions

■ Functions are really terms with holes/unknowns: $(3+\bullet)$.

Higher-Order Terms are Functions

■ Functions are really terms with holes/unknowns: $(3+\bullet)$.
■ Holes are represented by variables.

- Holes filled in by applying (terms w/ holes)/functions.

■ Holes abstract details.

Higher-Order Terms are Functions

■ Functions are really terms with holes/unknowns: $(3+\bullet)$.
■ Holes are represented by variables.

- Holes filled in by applying (terms w/ holes)/functions.

■ Holes abstract details.
■ "x.e" represented by lambda abstraction " $\lambda x: \tau . e$ ".

- Twelf's syntax of " $\lambda x: \tau . e$ ": " $[x: \tau] e$ "

let expression in Twelf HOAS

- Twelf type signature of let:

$$
\text { let : exp }->\underbrace{(\exp ->\exp)}_{x \cdot e_{2}} \rightarrow \exp
$$

let expression in Twelf HOAS

- Twelf type signature of let:

$$
\text { let : exp -> } \underbrace{(\exp ->\exp)}_{x \cdot e_{2}}->\exp .
$$

■ Example HOAS term in Twelf:

Concrete Syntax	Twelf HOAS
let $\mathrm{x}=\underbrace{1+2}_{e_{1}}$ in $\underbrace{\mathrm{x}+3}_{e_{2}}$	let $\underbrace{(\text { add } 12)}_{e_{1}} \underbrace{([\mathrm{x}: \exp] \operatorname{add} \mathrm{x} \mathrm{3)}}_{x_{\cdot}}$

let expression in Twelf HOAS

- Twelf type signature of let:

$$
\text { let : exp }->\underbrace{(\exp ->\exp)}_{x \cdot e_{2}} \rightarrow \exp
$$

■ Example HOAS term in Twelf:

$$
\begin{array}{l|l}
\text { Concrete Syntax } & \text { Twelf HOAS } \\
\hline \text { let } \mathrm{x}=\underbrace{1+2}_{e_{1}} \text { in } \underbrace{\mathrm{x}+3}_{e_{2}} & \text { let } \underbrace{(\operatorname{add} 12)}_{e_{1}} \underbrace{([\mathrm{x}: \exp] \text { add } \mathrm{x} 3)}_{x_{\cdot} e_{2}}
\end{array}
$$

■ No need to define object (Minilang) variables.

- LF variables remove need for object variables.
- No need to define substitution (nor requisite theorems) as well.

Predicates in Twelf

- Predicates are defined with type families:

Functions that return types (not terms).
■ Typing Predicate: e: τ
■ Twelf Encoding: of : exp -> typ -> type.

Predicates in Twelf

- Predicates are defined with type families:

Functions that return types (not terms).
■ Typing Predicate: $e: \tau$
■ Twelf Encoding: of : exp -> typ -> type.

- Type families return dependent types.
- Types that contain terms (or depend on terms).

Predicates in Twelf

- Predicates are defined with type families:

Functions that return types (not terms).
■ Typing Predicate: $e: \tau$
■ Twelf Encoding: of : exp -> typ -> type.

- Type families return dependent types.
- Types that contain terms (or depend on terms).
- Examples:
- 3 is a term of type nat.

Predicates in Twelf

- Predicates are defined with type families:

Functions that return types (not terms).
■ Typing Predicate: e: τ
■ Twelf Encoding: of : exp -> typ -> type.

- Type families return dependent types.
- Types that contain terms (or depend on terms).
- Examples:
- 3 is a term of type nat.
- Let Vec be a function that given nat $n, \operatorname{Vec}(n)$ returns the type of n-dimensional vectors.

Predicates in Twelf

- Predicates are defined with type families:

Functions that return types (not terms).
■ Typing Predicate: $e: \tau$
■ Twelf Encoding: of : exp -> typ -> type.

- Type families return dependent types.
- Types that contain terms (or depend on terms).

■ Examples:

- 3 is a term of type nat.
- Let Vec be a function that given nat $n, \operatorname{Vec}(n)$ returns the type of n-dimensional vectors.
- $\operatorname{Vec}(3)$ is a dependent type representing 3-dimensional vectors.

Predicates in Twelf

- Predicates are defined with type families:

Functions that return types (not terms).
■ Typing Predicate: $e: \tau$
■ Twelf Encoding: of : exp -> typ -> type.

- Type families return dependent types.
- Types that contain terms (or depend on terms).

■ Examples:

- 3 is a term of type nat.
- Let Vec be a function that given nat $n, \operatorname{Vec}(n)$ returns the type of n-dimensional vectors.
- $\operatorname{Vec}(3)$ is a dependent type representing 3-dimensional vectors.
- $[4,1,3]$ is a term of type $\operatorname{Vec}(3)$.

Predicates in Twelf

- Predicates are defined with type families:

Functions that return types (not terms).
■ Typing Predicate: $e: \tau$
■ Twelf Encoding: of : exp -> typ -> type.

- Type families return dependent types.
- Types that contain terms (or depend on terms).
- Examples:
- 3 is a term of type nat.
- Let Vec be a function that given nat $n, \operatorname{Vec}(n)$ returns the type of n-dimensional vectors.
- $\operatorname{Vec}(3)$ is a dependent type representing 3-dimensional vectors.
- [4, 1, 3] is a term of type $\operatorname{Vec}(3)$.
- Vec is a type family because it is a function that returns dependent types.

Judgments are Dependent Types

■ Judgments/Propositions (instantiations of predicates) represented by dependent types.
■ Judgment z : num represented by type (of (enat z) num).
■ Dependent type (of e τ) represents judgment "e: τ ".

Judgments are Dependent Types

■ Judgments/Propositions (instantiations of predicates) represented by dependent types.
■ Judgment z : num represented by type (of (enat z) num).
■ Dependent type (of e τ) represents judgment "e: τ ".
■ Derivation/Proof of "e: τ " represented by term of type (of $e \tau$).

Judgments are Dependent Types

■ Judgments/Propositions (instantiations of predicates) represented by dependent types.
■ Judgment z : num represented by type (of (enat z) num).
■ Dependent type (of e τ) represents judgment "e: τ ".
■ Derivation/Proof of "e: τ " represented by term of type (of $e \tau$).

- Curry-Howard Correspondence:

Proofs are terms.
Propositions/Judgments are types.

Pi-Abstractions

■ Function/Lambda Abstraction " $\lambda x: S . e$ " of type $S \rightarrow T$:

- Takes in a term s of type S.
- Returns a term of type T.

Pi-Abstractions

■ Function/Lambda Abstraction " $\lambda x: S . e$ " of type $S \rightarrow T$:

- Takes in a term s of type S.
- Returns a term of type T.

■ Function/Pi-abstraction of type pi-type $\Pi x: S . T$:

- Takes in a term s of type S.
- Returns a term of type $[s / x] T$.

Pi-Abstractions

■ Function/Lambda Abstraction " $\lambda x: S . e$ " of type $S \rightarrow T$:

- Takes in a term s of type S.
- Returns a term of type T.

■ Function/Pi-abstraction of type pi-type $\Pi_{x}: S . T$:

- Takes in a term s of type S.
- Returns a term of type $[s / x] T$.

■ If $x \notin f v(T)$, then $\Pi x: S . T \equiv S \rightarrow T$.

Pi-Abstractions

■ Function/Lambda Abstraction " $\lambda x: S . e$ " of type $S \rightarrow T$:

- Takes in a term s of type S.
- Returns a term of type T.

■ Function/Pi-abstraction of type pi-type $\Pi x: S . T$:

- Takes in a term s of type S.
- Returns a term of type $[s / x] T$.
- If $x \notin f v(T)$, then $\Pi x: S . T \equiv S \rightarrow T$.
- If $x \in f v(T)$, then $\Pi x: S . T$ returns term of a dependent type.

Pi-Abstractions

■ Function/Lambda Abstraction " $\lambda x: S . e$ " of type $S \rightarrow T$:

- Takes in a term s of type S.
- Returns a term of type T.

■ Function/Pi-abstraction of type pi-type $\Pi x: S . T$:

- Takes in a term s of type S.
- Returns a term of type $[s / x] T$.
- If $x \notin f v(T)$, then $\Pi x: S . T \equiv S \rightarrow T$.
- If $x \in f v(T)$, then $\Pi x: S . T$ returns term of a dependent type.
- Twelf Syntax for $S \rightarrow T$:

S -> T

Pi-Abstractions

■ Function/Lambda Abstraction " $\lambda x: S . e$ " of type $S \rightarrow T$:

- Takes in a term s of type S.
- Returns a term of type T.

■ Function/Pi-abstraction of type pi-type $\Pi x: S . T$:

- Takes in a term s of type S.
- Returns a term of type $[s / x] T$.
- If $x \notin f v(T)$, then $\Pi x: S . T \equiv S \rightarrow T$.
- If $x \in f v(T)$, then $\Pi x: S . T$ returns term of a dependent type.
- Twelf Syntax for $S \rightarrow T$:

S -> T

- Twelf Syntax for $\Pi x: S . T$:
\{x:S\} T

Inference Rules are Functions

$$
\overline{\text { num }[n]:} \text { num } \mathrm{T} .1
$$

■ of/nat : \{N:nat of (enat N) num.
■ Twelf Convention:

- Constants start with lower-case letters.
- Variables/parameters start with upper-case letters.

Inference Rules are Functions

$$
\overline{\operatorname{num}[n]: ~ n u m} \quad \text { T. } 1
$$

■ of/nat : $\{\mathrm{N}:$ nat $\}$ of (enat N) num.

- Twelf Convention:
- Constants start with lower-case letters.
- Variables/parameters start with upper-case letters.

■ (of/nat z) \neq (of (enat z) num).
■ Function of/nat returns terms not types.
■ Function of returns types.

Inference Rules are Functions

$$
\overline{\operatorname{num}[n]: n u m}{ }^{\text {T. }} 1
$$

■ of/nat : $\{N:$ nat $\}$ of (enat N) num.

- Twelf Convention:
- Constants start with lower-case letters.
- Variables/parameters start with upper-case letters.

■ (of/nat z) \neq (of (enat z) num).
■ Function of/nat returns terms not types.
■ Function of returns types.
■ (of/nat z) = term of type (of (enat z) num).

- Example legal assignment:

$$
y:(o f(\text { enat } z) n u m)=(o f / n a t z) .
$$

Inference Rules are Functions

$$
\overline{\operatorname{num}[n]: n u m}{ }^{\text {T. }} 1
$$

■ of/nat : $\{N:$ nat $\}$ of (enat N) num.

- Twelf Convention:
- Constants start with lower-case letters.
- Variables/parameters start with upper-case letters.

■ (of/nat z) \neq (of (enat z) num).
■ Function of/nat returns terms not types.
■ Function of returns types.
■ (of/nat z) = term of type (of (enat z) num).

- Example legal assignment:

$$
y:(\text { of (enat } z) n u m)=(o f / n a t z) .
$$

■ (of/nat z) is a derivation/term of judgment z : num represented by type (of (enat z) num).

Premises are Inputs

$$
\frac{e_{1}: \text { num } e_{2}: \text { num }}{+\left(e_{1} ; e_{2}\right): \text { num }} \text { т. } 4
$$

- Twelf Encoding:

```
    of/add : of (add E1 E2) num
    <- of E1 num
    <- of E2 num.
```

- Given a proof of (of E2 num) and
- Given a proof of (of E1 num)

■ of/add returns proof of (of (add E1 E2) num)

Implicit and explicit parameters

■ of/nat: $\{N:$ nat $\}$ of (enat N) num.

- Parameter N is explicit in the above signature.

■ Explicit parameters must be specified in function applications.
■ D : of (enat z) num = of/nat z.

Implicit and explicit parameters

■ of/nat: $\{N: n a t\}$ of (enat N) num.

- Parameter N is explicit in the above signature.
- Explicit parameters must be specified in function applications.
■ D : of (enat z) num = of/nat z.
■ of/nat: of (enat N) num.
■ Parameter N is implicit in the above signature.
- Implicit parameters cannot be specified by programmer in function applications.
■ D : of (enat z) num = of/nat.
■ Twelf figures out from the context (type of left-hand side of assignment) that z is the implicit parameter that of/nat should be applied to.

First-Order Quantification Only

■ Can only quantify over first-order terms.

- Allowed:
- add : exp -> exp -> exp.
- let : exp -> (exp -> exp) -> exp.
- A higher-order term is a function, where one of its inputs is also a function.

First-Order Quantification Only

- Can only quantify over first-order terms.
- Allowed:
- add : exp -> exp \rightarrow exp.
- let : exp -> (exp -> exp) -> exp.
- A higher-order term is a function, where one of its inputs is also a function.
- Not allowed:
- quantifyTypes : exp -> type -> exp.
- allIsTrue : \{Prop:type\} Prop.
- The kind type categorizes Twelf types.

First-Order Quantification Only

■ Can only quantify over first-order terms.

- Allowed:
- add : exp -> exp \rightarrow exp.
- let : exp -> (exp -> exp) -> exp.
- A higher-order term is a function, where one of its inputs is also a function.
- Not allowed:
- quantifyTypes : exp -> type -> exp.
- allIsTrue : \{Prop:type\} Prop.
- The kind type categorizes Twelf types.

■ No type polymorphism implies no general logical connectives.
■ Not allowed:
conjunction :
$\{P:$ type $\}\{Q:$ type $\} P \rightarrow Q \rightarrow($ and $P Q$).

Predicativity

■ Different term levels used to restrict quantification.

- Twelf terms are first-order terms; e.g., (s z).
- Twelf types are second-order terms; e.g., nat.
- Twelf kinds are third-order terms; e.g., type.

Predicativity

- Different term levels used to restrict quantification.
- Twelf terms are first-order terms; e.g., (s z).
- Twelf types are second-order terms; e.g., nat.
- Twelf kinds are third-order terms; e.g., type.
- Twelf only allows predicative definitions:
- Cannot apply term to itself. (Cannot quantify over oneself.)
- No term has itself as type. (Not allowed: typ : typ.)
- Disallows Russell's paradox:

$$
\text { Let } H=\{x \mid x \notin x\} \text {. Then } \underbrace{H \in H \nLeftarrow H}_{\text {False }} \text {. }
$$

■ Helps Twelf avoid logical inconsistency (i.e. proving false/uninhabited type).

■ False implies any proposition (including false ones).

- False/uninhabited types used for constructive proofs by contradiction.

Laboratory

■ Create language of numbers with subtyping in Twelf.

Category	Item		Abstract	Concrete
Terms	e	$::=$	zero	0
			pi	
			img	$\sqrt{-1}$
Types	t	$=$	number	num
			real	real
			complex	complex
			int	int

More Exercises

■ Subtyping Rules (not all):

$$
\overline{\text { complex }<\text { : num }} \quad \overline{\text { real }<: \text { num }} \quad \overline{\text { int }<: \text { real }}
$$

- Typing Rules (not all):

$$
\overline{0: \text { int }} \quad \overline{\pi: \text { real }} \quad \overline{\sqrt{-1}: \text { complex }}
$$

- Define reflexive and transitive rules for subtyping.

■ Define subsumption rule for typing judgment.
■ Prove 0 : num.

- Fill in the blank below:
- D : (of zero number) = •

Hypothetical Judgments in Twelf

■ What happened to typing context 「?

Hypothetical Judgments in Twelf

■ What happened to typing context 「?
■ Hypothetical Judgments:
Judgments made under the assumption of other judgments.

Hypothetical Judgments in Twelf

■ What happened to typing context 「?
■ Hypothetical Judgments:
Judgments made under the assumption of other judgments.
■ Encoded w/ higher-order types:
Function types where one of the inputs is also a function type.

Hypothetical Judgments in Twelf

■ What happened to typing context Γ ?
■ Hypothetical Judgments:
Judgments made under the assumption of other judgments.
■ Encoded w/ higher-order types:
Function types where one of the inputs is also a function type.
■ Input function types represent hypothetical assumptions.

- Similar to higher-order terms.
(Another application of HOAS)
■ 「 does not need to be defined.

Typing let expression in Twelf HOAS

$$
\frac{\Gamma \vdash e_{1}: \tau_{1} \Gamma, x: \tau_{1} \vdash e_{2}: \tau_{2}}{\Gamma \vdash \operatorname{let}\left(x ; e_{1} ; e_{2}\right): \tau_{2}} \text { т. } 6
$$

- Twelf Encoding:

$$
\begin{aligned}
& \text { of /let : }(\{x: \text { exp }\} \text { of } x \text { T1 } \rightarrow \text { of (E2 x) T2) } \rightarrow \\
& \text { of E1 T1 }-> \\
& \text { of (let E1 }([x] \text { E2 } x)) \text { T2. }
\end{aligned}
$$

Typing let expression in Twelf HOAS

$$
\frac{\Gamma \vdash e_{1}: \tau_{1} \Gamma, x: \tau_{1} \vdash e_{2}: \tau_{2}}{\Gamma \vdash \operatorname{let}\left(x ; e_{1} ; e_{2}\right): \tau_{2}} \text { т. } 6
$$

- Twelf Encoding:

$$
\begin{aligned}
& \text { of llet }:(\{x: \exp \} \text { of } x \mathrm{~T} 1->\text { of }(\mathrm{E} 2 \mathrm{x}) \mathrm{T} 2)-> \\
& \text { of } \mathrm{E} 1 \mathrm{~T} 1-> \\
& \text { of (let E1 }([\mathrm{x}] \mathrm{E} 2 \mathrm{x})) \mathrm{T} 2 .
\end{aligned}
$$

- First, a Twelf coding convention:

Return type (of (let E1 ([x] E2 x)) T2) could be replaced with (of (let E1 E2) T2).
■ E2 in both cases is of type (exp -> exp).

- ($[\mathrm{x}]$ E2 x) used for readability: \# of inputs explicit.

■ ($[\mathrm{x}] \mathrm{E} 2 \mathrm{x}$) is called the eta-expansion of E2.

of/let's first input type

- Let f be a function of of /let's first input type: ($\{\mathrm{x}: \exp \}$ of x T1 $->$ of (E2 x) T2).
■ That type models hypothetical judgment: $\Gamma, x: \tau_{1} \vdash e_{2}: \tau_{2}$.

of/let's first input type

- Let f be a function of of /let's first input type: ($\{\mathrm{x}: \exp \}$ of x T1 $->$ of (E2 x) T2).
■ That type models hypothetical judgment: $\Gamma, x: \tau_{1} \vdash e_{2}: \tau_{2}$.
- f 's first input is an exp term bound to LF variable x .

of/let's first input type

- Let f be a function of of/let's first input type:

$$
(\{x: \quad \exp \} \text { of } x \text { T1 }->\text { of (E2 } x) T 2) .
$$

■ That type models hypothetical judgment: $\Gamma, x: \tau_{1} \vdash e_{2}: \tau_{2}$.
■ f 's first input is an exp term bound to LF variable x .

- f 's second input is a term dx of type (of x T1). $d \mathrm{~d}=$ proof that f 's first input has type T1

of/let's first input type

■ Let f be a function of of/let's first input type: ($\{\mathrm{x}: \exp \}$ of x T1 $->$ of (E2 x) T2).
■ That type models hypothetical judgment: $\Gamma, x: \tau_{1} \vdash e_{2}: \tau_{2}$.

- f 's first input is an exp term bound to LF variable x .
- f 's second input is a term dx of type (of x T1). $\mathrm{dx}=$ proof that f 's first input has type T1
■ f 's output is a term of type (of (E2 x) T2):
a proof that E2 instantiated with exp term x has type T2.

of/let's first input type

■ Let f be a function of of/let's first input type: ($\{\mathrm{x}: \exp \}$ of x T1 $->$ of (E2 x) T2).
■ That type models hypothetical judgment: $\Gamma, x: \tau_{1} \vdash e_{2}: \tau_{2}$.

- f 's first input is an exp term bound to LF variable x .

■ f 's second input is a term dx of type (of $\mathrm{x} \mathrm{T1}$). $\mathrm{dx}=$ proof that f 's first input has type T1

- f 's output is a term of type (of (E2 x) T2):
a proof that E2 instantiated with exp term x has type T 2 .
- dx of type (of x T1) can be used in the definition of f to return a proof/term of type (of (E2 x) T2).
- The ability to use a proof (dx) of type (of x T1) to derive a proof of type (of (E2 x) T2) simulates the ability to use an assumption $x: \tau_{1}$ to prove $e_{2}: \tau_{2}$.

Exercise Applying Hypothetical Judgment

■ Derive the judgment \vdash let x be 1 in $\mathrm{x}+0:$ num in Twelf.
■ Twelf encoding of above judgment:
of (let (enat (s z)) ([x:exp] add x (enat z))) num.

- Recall important signatures (displaying implicit parameters):

```
of/let : {T1:typ} {E2:exp -> exp} {T2:typ} {E1: exp}
({x:exp} of x T1 -> of (E2 x) T2) -> of E1 T1
    -> of (let E1 ([x:exp] E2 x)) T2.
of/nat : {N:nat} of (enat N) num.
of/add : {E2: exp} {E1:exp}
    of E2 num -> of E1 num -> of (add E1 E2) num.
```


Solution to Previous Exercise

■ Derive the judgment \vdash let x be 1 in $\mathrm{x}+0:$ num in Twelf.

- Twelf encoding of above judgment:
of (let (enat (s z)) ([x:exp] add x (enat z))) num.
■ Recall important signatures (without implicit parameters):

```
of/let : ({x:exp} of x T1 -> of (E2 x) T2) ->
    of E1 T1 -> of (let E1 ([x:exp] E2 x)) T2.
of/nat : of (enat N) num.
of/add :
    of E2 num -> of E1 num -> of (add E1 E2) num.
```

- Twelf proof of above judgment:
of/let
([x:exp] [dx:of x num] of/add (of/nat z) $d x$). (of/nat (s z))

Relations w/ Inputs and Outputs (Modes)

- Inputs/Outputs defined with \%mode declaration.
of : exp -> typ -> type.
\%mode of $+\mathrm{E}-\mathrm{T}$.
- Inputs marked with +.

■ Outputs marked with -.

Relations w/ Inputs and Outputs (Modes)

■ Inputs/Outputs defined with \%mode declaration.
of : exp -> typ -> type.
\%mode of $+\mathrm{E}-\mathrm{T}$.

- Inputs marked with +.
- Outputs marked with -.

■ Outputs can be derived automatically using Twelf's logic programming engine (example later).

Relations w/ Inputs and Outputs (Modes)

■ Inputs/Outputs defined with \%mode declaration.
of : exp -> typ -> type.
\%mode of $+\mathrm{E}-\mathrm{T}$.

- Inputs marked with +.
- Outputs marked with -.

■ Outputs can be derived automatically using Twelf's logic programming engine (example later).

- Not all relations required modes.

■ Modes are necessary for specifying theorems.
■ Modes used also for checking proofs of theorems.

Relations w/ Inputs and Outputs (Modes)

- Inputs/Outputs defined with \%mode declaration.
of : exp -> typ -> type.
$\%$ mode of $+\mathrm{E}-\mathrm{T}$.
- Inputs marked with +.
- Outputs marked with -.

■ Outputs can be derived automatically using Twelf's logic programming engine (example later).

- Not all relations required modes.
- Modes are necessary for specifying theorems.

■ Modes used also for checking proofs of theorems.

- Only ground terms may be applied to relations w/ modes in rules (details later).

Backward Arrow vs. Forward Arrow

- Output terms must be ground given ground input terms.
- Ground terms do not contain free variables.
- Output terms are fixed (ground) wrt (ground) inputs.
- Forward " $->$ " reflects order that premises are passed to rules/functions and makes proofs more natural.
■ Backward "<-" reflects order of resolving ground terms.

Backward Arrow vs. Forward Arrow

- Output terms must be ground given ground input terms.
- Ground terms do not contain free variables.
- Output terms are fixed (ground) wrt (ground) inputs.
- Forward "->" reflects order that premises are passed to rules/functions and makes proofs more natural.
■ Backward "<-" reflects order of resolving ground terms.
■ Order of args allowed by Twelf:

```
of/let : ({x: exp} of x T1 -> of (E2 x) T2) ->
    of E1 T1 ->
    of (let E1 ([x] E2 x)) T2.
```


Backward Arrow vs. Forward Arrow

- Output terms must be ground given ground input terms.
- Ground terms do not contain free variables.
- Output terms are fixed (ground) wrt (ground) inputs.

■ Forward "->" reflects order that premises are passed to rules/functions and makes proofs more natural.
■ Backward "<-" reflects order of resolving ground terms.
■ Order of args allowed by Twelf:
of/let : ($\{\mathrm{x}: \exp \}$ of x T1 \rightarrow of (E2 x) T2) ->
of E1 T1 ->
of (let E1 ([x] E2 x)) T2.

- Order of args that causes error:
of/let : of E1 T1 ->

$$
\begin{aligned}
& (\{x: \quad \exp \} \text { of } x \text { T1 }->\text { of (E2 x) T2) -> } \\
& \text { of (let E1 }([x] \text { E2 x)) T2. }
\end{aligned}
$$

Backward Arrow vs. Forward Arrow

- Output terms must be ground given ground input terms.
- Ground terms do not contain free variables.
- Output terms are fixed (ground) wrt (ground) inputs.

■ Forward "->" reflects order that premises are passed to rules/functions and makes proofs more natural.
■ Backward "<-" reflects order of resolving ground terms.
■ Order of args allowed by Twelf:
of/let : ($\{\mathrm{x}: \exp \}$ of x T1 \rightarrow of (E2 x) T2) ->
of E1 T1 ->
of (let E1 ([x] E2 x)) T2.
$■$ Order of args that causes error: of/let : of E1 T1 ->

$$
\begin{aligned}
& (\{x: \quad \exp \} \text { of } x \text { T1 }->\text { of (E2 x) T2) -> } \\
& \text { of (let E1 }([x] \text { E2 x)) T2. }
\end{aligned}
$$

■ Error message:
Occurrence of variable T1 in output (-) argument not necessarily ground

Universally-Quantified Inputs

- Terms in input positions of return type are universally-quantified inputs to function.
■ right1 : of E1 num -> of (add E1 (enat z)) num.

Universally-Quantified Inputs

- Terms in input positions of return type are universally-quantified inputs to function.
■ right1 : of E1 num -> of (add E1 (enat z)) num.
- Terms in input position of return type:
(add E1 (enat z)).

Universally-Quantified Inputs

- Terms in input positions of return type are universally-quantified inputs to function.
■ right1 : of E1 num -> of (add E1 (enat z)) num.
- Terms in input position of return type: (add E1 (enat z)).
- Tokens starting with capital letters are assumed by Twelf to be variables in type: E1.

Universally-Quantified Inputs

- Terms in input positions of return type are universally-quantified inputs to function.
■ right1 : of E1 num -> of (add E1 (enat z)) num.
- Terms in input position of return type:
(add E1 (enat z)).
- Tokens starting with capital letters are assumed by Twelf to be variables in type: E1.
- Free variables in input position of return type, E1, are inferred by Twelf to be universally-quantified inputs to function right1.
- Only these terms are allowed to be universal inputs to function right1.

Resolving Ground Terms

- All terms must be ground terms:
constants or terms without free variables assuming that input terms (from return type) are also ground (do not contain free variables).
- Next Step:

Check that input terms in type preceding return type are ground:
■ right1 : of E1 num -> of (add E1 (enat z)) num.

Resolving Ground Terms

- All terms must be ground terms:
constants or terms without free variables assuming that input terms (from return type) are also ground (do not contain free variables).
- Next Step:

Check that input terms in type preceding return type are ground:
■ right1 : of E1 num $->$ of (add E1 (enat z)) num.

Resolving Ground Terms

- All terms must be ground terms:
constants or terms without free variables assuming that input terms (from return type) are also ground (do not contain free variables).
- Next Step:

Check that input terms in type preceding return type are ground:
■ right1 : of E1 num -> of (add E1 (enat z)) num.
■ E1 in premise type (of E1 num) is ground wrt E1 in return type because they are the same.

Resolving Ground Terms

- All terms must be ground terms: constants or terms without free variables assuming that input terms (from return type) are also ground (do not contain free variables).
- Next Step:

Check that input terms in type preceding return type are ground:
■ right1 : of E1 num -> of (add E1 (enat z)) num.

■ E1 in premise type (of E1 num) is ground wrt E1 in return type because they are the same.

- num in premise type (of E1 num) is ground wrt return type because num is a constant.

Non-ground Term in Premise Causing Error

■ wrong1 : of E2 num -> of (add E1 (enat z)) num.
■ E2 term not coming from conclusion (return type).

Ground Term From Output

■ Output terms resulting from grounded input terms are also ground.

- Second argument of the of relation is an output argument.
right2 : of E T -> of (add E (enat z)) T.

Ground Term From Output

- Output terms resulting from grounded input terms are also ground.
■ Second argument of the of relation is an output argument.

$$
\text { right2 : of } \mathrm{E} \text { T } \rightarrow \text { of (add } \mathrm{E}(\text { enat } z) \text {) } T .
$$

Ground Term From Output

- Output terms resulting from grounded input terms are also ground.
- Second argument of the of relation is an output argument.

$$
\text { right2 : of } E T \text {-> of (add } E(\text { enat } z) \text {) } T .
$$

Ground Term From Output

- Output terms resulting from grounded input terms are also ground.
- Second argument of the of relation is an output argument.

$$
\text { right2 : of } \mathrm{E} T \text {-> of (add } \mathrm{E}(\text { enat } z \text {)) } \mathrm{T} .
$$

- Term T is computed/result of premise/recursive call (of E T).

Ground Term From Output

- Output terms resulting from grounded input terms are also ground.
- Second argument of the of relation is an output argument.

$$
\text { right2 : of } \mathrm{E} T \text {-> of (add } \mathrm{E}(\text { enat z)) } \mathrm{T} \text {. }
$$

- Term T is computed/result of premise/recursive call (of E T).

Non-ground Term in Conclusion Causing Error

■ Output term in conclusion not grounded:
wrong2 : of E T1 -> of (add E (enat z)) T2.

■ Output term T2 is universally quantified instead of a grounded result of the input term. This violates the \%mode declaration of the of relation.

Previous Examples for Grounds Checking

■ right1 : of E1 num -> of (add E1 (enat z)) num.
■ wrong1 : of E2 num -> of (add E1 (enat z)) num.
■ right2 : of E T \rightarrow of (add E (enat z)) T.
■ wrong2 : of E T1 -> of (add E (enat z)) T2.

Decidable Predicate Definitions

■ Decidable Predicate Definition or Algorithmic Definition: Definition of predicate that gives an algorithm for deciding predicate thats halts on all inputs within a finite number of steps.
■ Constructive Logic Requirement:
Proposition is true iff there exists a proof of it.

Decidable Predicate Definitions

- Decidable Predicate Definition or Algorithmic Definition: Definition of predicate that gives an algorithm for deciding predicate thats halts on all inputs within a finite number of steps.
- Constructive Logic Requirement: Proposition is true iff there exists a proof of it.
- For every true proposition/instance of predicate, algorithm finds a proof of proposition.
■ For every false proposition of predicate, algorithm determines no proof exists.

Termination

■ \%terminates checks a program succeeds or fails in a finite number of steps given ground inputs.

- Modes with termination ensure decidable definitions.
- Termination not guaranteed with transitive rule.

```
subtype : typ -> typ -> type.
%mode subtype +T1 -T2.
subtype/int/rea : subtype int real.
subtype/rea/num : subtype real number.
subtype/num/num : subtype number number.
subtype/trans:
    subtype T1 T3 <- subtype T1 T2 <- subtype T2 T3.
%terminates T (subtype T _).
```

■ Error: Termination violation: ---> (T1) < (T1)
■ First input to subtype not smaller in premise/recursive call.

Syntax-Directed Definition

- Syntax-Directed Definition: For each syntactic form of input, there is at most one applicable rule.
- Syntax of input term tells us which rule to use. (or if no rule applies)
- Each true proposition of a syntax-directed predicate has exactly one unique derivation.
- Only one way to derive $+(5 ; 3)$: num.

$$
\begin{array}{llll}
\hline 5: & \text { num } & \text { of/num } & 3: \\
\hline & +(5 ; 3): & \text { num } &
\end{array}
$$

■ No need for exhaustive proof search with syntax-directed predicates.

Checking Syntax-Directed

- Check that rules of relation/type family (e.g. subtype) are syntax-directed by passing relation to \%unique declaration.
■ \%unique checks if output arguments of relation are uniquely determined by input arguments.
■ \%unique also checks if two rules overlap or can derive the same judgment.
subtype : typ -> typ -> type.
subtype/rea/num : subtype real number.
subtype/num/num : subtype number number.
subtype/trans:
subtype T1 T3 <- subtype T1 T2 <- subtype T2 T3.
\%worlds () (subtype _ _).
$\%$ unique subtype +T1 +T2.
■ Error: subtype/rea/num and subtype/trans overlap
- Both rules could be used to derive subtype real number.

Automatic Proof Derivation

- Twelf can derive (search) for proofs:

■ \%solve D1 :
of (estr (a , b , c , a , eps)) string.

- Twelf will save proof term in D1.

Printing Proof Terms

- To print all (implicit) terms in proofs:
- From Twelf Server:
"set Print.implicit true"
■ From ML (SML) Prompt:
"Twelf.Print.implicit := true"
■ Then just execute "Check File": Emacs Key Sequence: "C S

Proof Term in Sample Output

loadFile test_typing.elf
[Opening file test_typing.elf]
\%solve
of (estr (, a (, b (, c (, a eps))))) string.
OK
D1 : of (estr (, a (, b (, c (, a eps))))) string = of/str (, a (, b (, c (, a eps)))).

Twelf Theorems

■ Preservation Theorem:
If (of E T) and (step E E'), then (of E' T).

Twelf Theorems

■ Preservation Theorem:
If (of E T) and (step E E'), then (of E' T).
■ Twelf allows expressing $\forall \exists$-type properties.
■ Preservation, re-formulated:

- For every derivation of (of E T) and (step E E'),
- there exists at least one derivation of (of E ' T).

Twelf Theorems

■ Preservation Theorem:
If (of E T) and (step E E'), then (of E' T).
■ Twelf allows expressing $\forall \exists$-type properties.
■ Preservation, re-formulated:

- For every derivation of (of E T) and (step E E'),
- there exists at least one derivation of (of E ' T).

■ \%theorem
preservation :

```
    forall* {E} {E'} {T}
    forall {O:of E T} {S:step E E'}
    exists {O':of E' T}
    true.
```

■ Verbose syntax above.
Desugared, concise alternative on next slide.

Theorems are Function Types w/ Specified Inputs/Outputs

■ Preservation theorem is a function returning types (type family):
preservation:

$$
\text { of E T -> step E E' -> of E' T } \rightarrow \text { type. }
$$

- Premises are inputs. Conclusions are outputs.
\%mode preservation +0 +S -0'.
- To prove preservation theorem, need to show preservation is a total relation on all possible inputs.
- For each possible derivation of premises (inputs), need at least one derivation of conclusion (output).

Proofs of Theorems

- Proofs of theorems are total relations over inputs.
- Proving theorem
$=$ Constructing functions for each case:
- For each constructor of term to perform structural induction on.

Proofs of Theorems

- Proofs of theorems are total relations over inputs.
- Proving theorem
$=$ Constructing functions for each case:
- For each constructor of term to perform structural induction on.
- Note:

No case-split or pattern match construct in Twelf.

- This is the reason why multiple functions are required to prove theorem for multiple cases.
- Results in smaller proof terms but more of them.

Preservation Proof - Addition Case 2 - Informal

Case: (T.4, D.1)

$$
\frac{e_{1}: \text { num } e_{2}: \text { num }}{+\left(e_{1} ; e_{2}\right): \text { num }} \text { т. } 4 \quad \frac{e_{1} \mapsto e_{1}^{\prime}}{+\left(e_{1} ; e_{2}\right) \mapsto+\left(e_{1}^{\prime} ; e_{2}\right)} \text { D. } 1
$$

We assume preservation holds for subexpressions. Hence, by the inductive hypothesis, e_{1} : num and $e_{1} \mapsto e_{1}^{\prime}$ implies e_{1}^{\prime} : num. Rule T. 4 gives us:

$$
\frac{e_{1}^{\prime}: \text { num } e_{2}: \text { num }}{+\left(e_{1}^{\prime} ; e_{2}\right): \text { num }} \text { т. } 4
$$

\square

Twelf Proof of Addition Case 2

of/add : of (add E1 E2) num <- of E1 num <- of E2 num.

- :
\{E1-num : of E1 num \}
\{E2-num : of E2 num \}
\{E1=>E1' : step E1 E1' \}
\{E1'-num : of E 1 ' num \}
preservation E1-num E1=>E1' E1'-num \rightarrow
preservation
((of/add E2-num E1-num) : (of (add E1 E2) num))
((step/add1 E1 $=>E 1$ ') :
(step (add E1 E2) (add E1' E2)))
((of/add E2-num E1'-num) : (of (add E1' E2) num)).

Proof Case without Explicit Types

- : preservation

```
(of/add E2-num E1-num)
(step/add1 E1=>E1')
(of/add E2-num E1'-num)
    <- preservation E1-num E1=>E1' E1'-num.
```

- Types of terms in proofs: usually not required to specify.
- Allowed to be manually specified.
- Output from Twelf server contains (some) inferred types.

Applying Inductive Hypothesis

- : preservation
(of/add E2-num E1-num)
(step/add1 E1=>E1')
(of/add E2-num E1'-num)
<- preservation E1-num E1=>E1' E1'-num.
- Applying inductive hypothesis $=$ recursive call.

Checking Proof Totality

■ After proving all cases, ask Twelf to check we covered all cases.

```
%worlds () (preservation _ _ _).
%total E-T (preservation E-T _ _).
```

■ \%total E-T tells Twelf to check proof of totality by structural induction on typing derivation E-T.
■ Details of \%world declaration later.

Missing Case

■ If we forget to prove a case, \%total command will fail.

- Twelf prints error message to help user "debug" proof:
preservation.elf:69.8-69.11 Error:
Coverage error --- missing cases:
\{E1: exp \} \{E2: exp\} \{E3: exp \}
\{01:of (add E1 E2) num\} \{S1:step E1 E3\}
\{02:of (add E3 E2) num\}
|- preservation 01 (step/add1 S1) 02.
- Forgot the case where we could derive:
- (of (add E1 E2) num)
- (step (add E1 E2) (add E3 E2)))

■ Need to construct proof of (of (add E3 E2) num).

Assuming What Needs To Be Proven

■ Cannot prove theorem by just assuming conclusion of theorem holds.

Assuming What Needs To Be Proven

■ Cannot prove theorem by just assuming conclusion of theorem holds.

- Also, cannot assume propositions not derived from premises of theorem.

Assuming What Needs To Be Proven

■ Cannot prove theorem by just assuming conclusion of theorem holds.

- Also, cannot assume propositions not derived from premises of theorem.
- Such a proof will contain a non-ground term.
- \%mode declarations used to check proofs.

Recall Valid Proof of Case

- : \{E1-num : of E1 num \{E2-num : of E2 num\} $\{\mathrm{E} 1=>\mathrm{E} 1$ ' : step E1 E1'\} \{E1'-num : of E1' num\} preservation E1-num E1=>E1' E1'-num
-> preservation (of/add E2-num E1-num) (step/add1 E1=>E1') (of/add E2-num E1'-num).

Invalid Proof of Case

$$
\begin{aligned}
-: & \{E 1-\text { num : of E1 num }\} \\
& \{E 2-n u m: \text { of E2 num }\} \\
& \{E 1=>E 1 ': \text { step E1 E1' }\} \\
& \{E 1 \text { '-num : of E1' num }\} \\
& \text { preservation (of/add E2-num E1-num) } \\
& \quad \text { (step/add1 E1=>E1') } \\
& \quad \text { (of/add E2-num E1'-num). }
\end{aligned}
$$

- Proof above just assumes of E1' num, which is not one of the assumptions for the case.
- E1'-num is not an input term in the conclusion (third) argument of preservation.
- E1'-num is not an output term derived from ground terms.
- Twelf reports error for function above.

Checking Entire Proofs of Theorems

- Twelf checks proofs of theorems by verifying three key aspects:
- Type checking - Proof of correct proposition
- Grounds checking - Valid assumptions
- Coverage checking - Proved all cases of theorem

■ Next few slides describes Twelf's coverage checking of proofs

Specifying Worlds - Possible Inputs

- To check totality of function/theorem, need to define all possible inputs or worlds.
- World = Set of terms of a type (inhabitants of a type)

■ Example world of natural numbers:

```
nat : type.
z : nat.
s : nat -> nat.
%worlds () (nat).
```


Specifying Worlds - Possible Inputs

- To check totality of function/theorem, need to define all possible inputs or worlds.
- World = Set of terms of a type (inhabitants of a type)

■ Example world of natural numbers:
nat : type.
z : nat.
s : nat -> nat.
\%worlds () (nat).
■ No term of type nat containing LF variables.
■ No such nat of form ($\mathrm{s} x$), where x of variable of type nat.

Terms Containing Binders

■ Let expression contains binders.

```
add : exp -> exp -> exp.
let : exp -> (exp -> exp) -> exp.
%worlds () (exp).
```


Terms Containing Binders

- Let expression contains binders. add : exp -> exp -> exp.
let : exp -> (exp -> exp) -> exp. \%worlds () (exp).
- Error message:
syntax.elf:38.15-38.25 Error:
While checking constant let:
World violation for family exp: \{-:exp\} </: 1

Terms Containing Binders

- Let expression contains binders. add : exp -> exp -> exp.
let : exp -> (exp -> exp) -> exp. \%worlds () (exp).
- Error message:
syntax.elf:38.15-38.25 Error:
While checking constant let:
World violation for family exp: $\{-: \exp \}</: 1$
■ Need to tell Twelf about possible variables that can arise from rules.

Blocks

■ Blocks: Patterns describing fragment of contexts.

- Update addressing previous error: add : exp -> exp -> exp. let : exp -> (exp -> exp) -> exp. $\%$ block exp-block : block $\{x: \exp \}$. \%worlds (exp-block) (exp).
- Informs Twelf that terms of type exp can contain binders of type exp.

Blocks

■ Blocks: Patterns describing fragment of contexts.

- Update addressing previous error:
add : exp -> exp -> exp.
let : exp -> (exp -> exp) -> exp. \%block exp-block : block \{x:exp\}. \%worlds (exp-block) (exp).
- Informs Twelf that terms of type exp can contain binders of type exp.
- Worlds can take in multiple blocks. Syntax: \%worlds (block1 | block2 | ... | blockN) (exp).

Worlds for Relations w/ Outputs

■ Specifying world requires specifying how variables are quantified (universal inputs or ground outputs).
of : exp -> typ -> type.
$\%$ mode of $+\mathrm{E}-\mathrm{T}$.
..
of/let : of (let E1 ([x] E2 x)) T2 <- of E1 T1 <- (\{x: exp\} of x T1 -> of (E2 x) T2).
\%block of-block :
some $\{\mathrm{T}: \mathrm{typ}\}$ block $\{\mathrm{x}: \exp \}\left\{_\right.$: of $\left.\mathrm{x} T\right\}$.
\%worlds (of-block) (of _ _).
■ Number of args specified by pattern in \%worlds declaration: (of _ _)

Checking Proof Totality

- After defining the worlds of all inputs to a theorem/function type, we can ask Twelf to check that the proof/function is total: defined over the world.
\%worlds () (preservation _ _ _). \%total E-T (preservation E-T _ _).

■ \%total E-T tells Twelf to check proof of totality by structural induction on typing derivation $\mathrm{E}-\mathrm{T}$.

Checking Proof Totality

- After defining the worlds of all inputs to a theorem/function type, we can ask Twelf to check that the proof/function is total: defined over the world.

```
%worlds () (preservation _ _ _).
%total E-T (preservation E-T _ _).
```

■ \%total E-T tells Twelf to check proof of totality by structural induction on typing derivation E-T.

- Twelf checks proofs of theorems by:
- Type checking - Proof of correct proposition
- Grounds checking - Valid assumptions
- Coverage checking - Proved all cases of theorem

Totality Proof Automation

- Ask Twelf to derive proof for all cases of theorem: \%prove 3 E-T (preservation E-T _ _).
- by structural induction on typing derivation E-T
- 3 is bound on the size of proof terms.

Totality Proof Automation

- Ask Twelf to derive proof for all cases of theorem: \%prove 3 E-T (preservation E-T _ _).
- by structural induction on typing derivation E-T
- 3 is bound on the size of proof terms.
- Twelf fails to find proof of progress theorem because it requires nested case analysis.
- Need extra theorems for sub-cases (no case-split construct).
- See Twelf page on Output Factoring for more details: http://twelf.org/wiki/Output_factoring

My Review of Twelf: The Good

■ Language Simplicity: Fewer language constructs

- Functions encode many language elements (e.g., grammar, judgments, theorems, etc.)
- Good tool to start with for learning about proof assistants because of language simplicity and less syntactic sugar (my opinion).

My Review of Twelf: The Good

■ Language Simplicity: Fewer language constructs

- Functions encode many language elements (e.g., grammar, judgments, theorems, etc.)
- Good tool to start with for learning about proof assistants because of language simplicity and less syntactic sugar (my opinion).
- Language support (HOAS) for variable binding
- Do not need to define substitution and prove substitution lemmas (sometimes).
- Language support for context-sensitive propositions (hypothetical judgments).
- Do not need to define context of judgments and related lemmas (e.g. weakening) (sometimes).

My Review of Twelf: The Bad

- Language sometimes too simple
- Missing support for frequent use-cases (e.g., nested case analysis, no case-split construct).
- Less verbosity can lead to cryptic code:

Intent and meaning of code not clear without significant background:

- No text suggesting this is a proof case:
- : preservation (of/len _) (step/lenV _) of/nat.
- No text suggesting this checks a proof of a theorem:
\%worlds () (preservation _ _ _).
\%total E-T (preservation E-T _ _).
- Error messages could be improved (e.g. missing cases messages).
- Type annotations of function applications and defined names desired.

My Review of Twelf: The Bad (cont.)

■ No support for stepping through proof instead of just reading proof trees.

- Lack of automation: Many proofs require manual specification (e.g. proofs requiring nested case analysis).
- No libraries.
- No standard library
- No import statements - All code must be included (repeat definition of nat for every project using them)
- No polymorphism
- Separate definitions for (int_list), (str_list), etc.
- Each type needs its own definition of equality.

■ Many contexts require explicit definition (HOAS not always sufficient).

Summary

$\frac{A}{\text { OTWELFO }}$

- Twelf is a proof assistant tool for checking and deriving proofs of properties of languages and deductive logics.
- A tool for language design and implementation.

■ Imposes healthy reality and sanity check on language designs.
■ Exposes, and helps correct, subtle design errors early in the process.

