
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Refactoring Java Generics by Inferring Wildcards, In Practice

John Altidor
University of Massachusetts

jaltidor@cs.umass.edu

Yannis Smaragdakis
University of Athens
smaragd@di.uoa.gr

Abstract
Wildcard annotations can improve the generality of Java
generic libraries, but require heavy manual effort. We
present an algorithm for refactoring and inferring more gen-
eral type instantiations of Java generics using wildcards.
Compared to past approaches, our work is practical and im-
mediately applicable: we assume no changes to the Java type
system, while taking into account all its intricacies. Our sys-
tem allows users to select declarations (variables, method pa-
rameters, return types, etc.) to generalize and considers dec-
larations not declared in available source code. It then per-
forms an inter-procedural flow analysis and a method body
analysis, in order to generalize type signatures. We evaluate
our technique on six Java generic libraries. We find that 34%
of available declarations of variant type signatures can be
generalized—i.e., relaxed with more general wildcard types.
On average, 146 other declarations need to be updated when
a declaration is generalized, showing that this refactoring
would be too tedious and error-prone to perform manually.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.3.4
[Programming Languages]: Processors

Keywords variance, definition-site variance, use-site vari-
ance, wildcards, generics, polymorphism, refactoring

1. Introduction
The maintainability, safety, and reliability of existing Java
programs improve when libraries are refactored to define
generic classes. Generics enable clients to inform the com-
piler of the types of elements in a collection and improve
safety by eliminating unsafe casts.

Unfortunately, generics restrict subtyping, which is a key
feature of object-oriented languages for enabling general,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
OOPSLA ’14, October 19–21, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2585-1/14/10. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2660193.2660203

reusable functionality. A method that takes in an instance of
a class Animal, for example, will also accept an instance of a
subclass of Animal that does not yet exist. A method with an
argument type of List<Animal>, however, would not accept
a List<Dog> nor a List of any other subclass of Animal to
preserve type soundness.

Variance mechanisms in modern programming languages
try to address this problem by enabling two different instan-
tiations of a generic to be subtype related. Given a generic
type C<X>, when is a type-instantiation C<Exp1> a subtype
of another type instantiation C<Exp2>? Variance (more pre-
cisely: subtype variance with respect to generic type param-
eters) is the study of this question. Variance is a key topic
in language design, since it develops the exact rules govern-
ing the interplay of the two major forms of polymorphism:
parametric polymorphism (i.e., generics or templates) and
subtype (inclusion) polymorphism.

The Java language type system employs the concept of
use-site variance [13]: uses of a class can choose to spec-
ify that they are referring to a covariant, contravariant, or
bivariant version of the class. For instance, a method void

meth(C<? extends T> cx) accepts a covariant version of C.
The method argument can be of type C<T> but also C<S>

where S is a subtype of T. An object with type C<? extends

T> may not offer the full functionality of a C<T> object: the
type system ensures that the body of method meth employs
only such a subset of the functionality of C<T> that would be
safe to use on any C<S> object (again, with S a subtype of T).
This can be viewed informally as automatically projecting
class C and deriving per-use versions.

Our past work [1] presented an approach that infers
general use-site variance annotations for every use of a
generic C<X>, by leveraging the definition-site variance of
C, i.e., its most liberal safe variance based on all its meth-
ods. In this way, all generic types are classified as inher-
ently (i.e., based on their definition) covariant, contravari-
ant, bivariant, or invariant with respect to a type parame-
ter. Then, this inherent variance can be employed at every
use-site of the generic type. For example, our past approach
would infer that the interfaces java.util.Iterator<X>

and java.util.Comparator<X> are covariant and con-
travariant, respectively, with respect to their type param-
eters. Hence, it would be reasonable to change all oc-

currences of Iterator<T> (for any type expression T)
into Iterator<? extends T>: it is, e.g., safe to pass an
instance of Iterator<Dog> to a method expecting an
Iterator<Animal>, assuming Dog <: Animal. Similarly, one
can reasonably change all occurrences of Comparator<X>

into Comparator<? super X>.
This paper is based on the observation that this past work

needs significant extension to yield benefits with existing
programs and without changing the Java type system. First,
the approach ignores practical complexities. Preserving the
original program’s semantics with additional wildcards may
require adding wildcards to syntactically-illegal locations
(e.g., wildcards are not allowed in the outermost type argu-
ments in parent type declarations in Java). Second, our past
approach misses opportunities for more general types by
analyzing method bodies. Most importantly, however, past
work assumes that the entire program and all its libraries get
rewritten. Even if this was what the programmer desired, it is
an impossible requirement in practice: part of the code is un-
available for a rewrite (e.g., fixed signatures of native meth-
ods). Instead, we need an approach that is aware of which
type occurrences cannot be generalized and integrates this
knowledge into its variance inference. Furthermore, the use
mode of a variance inference algorithm is typically local: the
programmer wants help in safely generalizing a handful of
type occurrences, as well as any other types that are essential
in order to generalize the former.

We present a modular approach that addresses the above
need, by leveraging an inter-procedural flow analysis. Our
technique has an incremental usage mode: we only perform
program rewrites based on program sites that the program-
mer selected for refactoring (and on other sites these depend
on), and not on an entire, closed code base. Our type gener-
alization fully takes into account the peculiarities of the Java
type system, as well as other constraints (e.g., generic na-
tive methods) that render some type occurrences off-limits
for generalization. Furthermore, we perform a method body
analysis that can infer more general types than mere method
signature analysis. The result is a refactoring algorithm that
allows safely inferring more general types for any subset of a
program’s type occurrences and for any pragmatic environ-
ment restrictions. Our approach yields more general types
than past work [8, 15] and assumes no changes to Java (un-
like, e.g., [2]).

In outline, our work makes the following contributions:

• To assist the programmer with utilizing variance in Java,
we present a refactoring approach that automatically
rewrites Java code with more general wildcard types. Our
tool allows users to select which declarations to generalize
the type signatures of.

• Our approach works in a context where not all types can be
rewritten because, for example, they are declared in a third-
party library for which the source code is unavailable. The
user may also select declarations to exclude from rewriting

if keeping the more specific type is desired to support
future code updates.

• Our approach handles the entire Java language and pre-
serves the behavior of programs employing intricate Java
features, such as generic methods, method overrides, and
wildcard capture.

• We evaluate our tool on six Java generic libraries. We
find that 34% of available declarations of variant type
signatures (generic types that may promote a wildcard) can
be generalized—i.e., relaxed with more general wildcard
types. On average, 146 declarations will need to be updated
if a declaration is generalized, showing that this refactoring
would be too tedious and error-prone to perform manually.

• We offer both empirical evidence and a proof that the
refactoring algorithm is sound. The six large Java generic
libraries that were analyzed were also refactored by our
tool. The refactored code of the libraries was compiled us-
ing javac. Section B in the Appendix formally argues why
the refactoring algorithm preserves the ability to compile
programs.

2. Illustration
We next illustrate the impact and intricacies of inferring vari-
ance annotations in a pragmatic setting. Figure 1 presents an
example program before and after automatic refactoring by
our tool. This program declares two classes: WList, a write-
only list, and MapEntryWList, a specialized WList of map
entries. Our tool allows a user to select declarations whose
types should be generalized. For this example, suppose the
user selects method arguments source, dest, strings, and
entry (lines 7, 11, 18, and 23, respectively).

1. Consider generalizing the type of the argument dest, de-
clared on line 11, of the addAndLog method. In general, the
interface java.util.List is invariant in its type parame-
ter because it allows both reading elements from a list and
writing elements to a list. (We explain such background
in more detail in Section 3.) However, in the addAndLog

method, no elements are read from the list dest. Within this
method, only the add method is invoked on dest to write to
this list. The type signature of List.add contains the type
parameter of List only in the argument type, which is a
contravariant position. Hence, only a contravariant version
of List is required by dest, and its type can be safely pro-
moted to List<? super T>.

2. The user has selected generalizing the type of the argument
source of the addAll method declared on line 7. Only the
iterator method is invoked on source within this method,
which returns an Iterator<E>. As mentioned in Section 1,
Iterator is covariant in its type parameter, and our tool
infers this. As a result, the type parameter of List in the
type signature of List.iterator occurs only covariantly.
Because of the limited use of source in addAll we can

1 import java.util.*;
2 class WList<E> {
3 private List<E> elems = new LinkedList<E>();
4 void add(E elem) {
5 addAll(Collections.singletonList(elem));
6 }

7 void addAll(List<E> source) {

8 addAndLog(source.iterator(), this.elems);
9 }

10 static <T> void

11 addAndLog(Iterator<T> itr, List<T> dest) {

12 while(itr.hasNext()) {
13 T elem = itr.next();
14 log(elem);
15 dest.add(elem);
16 }
17 }

18 static void client(WList<String> strings) { ... }

19 }
20 class MapEntryWList<K,V>
21 extends WList<Map.Entry<K,V>> {
22 @Override

23 void add(Map.Entry<K, V> entry) { }

24 }

1 import java.util.*;
2 class WList<E> {
3 private List<E> elems = new LinkedList<E>();
4 void add(E elem) {
5 addAll(Collections.singletonList(elem));
6 }
7 void addAll(List<? extends E> source) {
8 addAndLog(source.iterator(), this.elems);
9 }

10 static <T> void
11 addAndLog(Iterator<? extends T> itr, List<? super T> dest) {

12 while(itr.hasNext()) {
13 T elem = itr.next();
14 log(elem);
15 dest.add(elem);
16 }
17 }
18 static void client(WList<? super String> strings) { ... }

19 }
20 class MapEntryWList<K,V>
21 extends WList<Map.Entry<K,V>> {
22 @Override
23 void add(Map.Entry<K, V> entry) { }
24 }

Figure 1. Code comparison. Original code on the left. Refactored code on the right. Declarations that were selected for
generalization are shaded in the original version.

safely infer that the type of source can be promoted to the
more general type List<? extends E>.

3. If only the type of source changes to List<? extends E>,
then the refactored program will no longer compile. After
changing source’s type, source.iterator() no longer re-
turns an Iterator<E> but instead an Iterator<? extends

E>. The method call to addAndLog on line 8 would cause
a type error because this method expects a stricter type,
Iterator<E>.1 As a result, to perform this refactoring with-
out introducing compilation errors, we must perform a flow
analysis to determine if generalizing the type of one dec-
laration requires changing the types of other declarations.
This flow analysis requires careful reasoning as depen-
dency relationships arise from many non-trivial language
features in Java. In this example, the type of the itr param-
eter (line 11) is also generalized to Iterator<? extends

T>.

4. The user has selected for generalization the type of the
strings argument of method client, declared on line 18.
The type of this argument is promoted to WList<? super

String>. The method body is elided for brevity, but let us
assume that all non-static methods of WList are dispatched
on variable strings in this method. The refactoring of the
type of strings is safe because the tool can infer that WList
is contravariant, but only after performing the earlier refac-
torings. In the original version, the occurrence of the type
parameter E in List<E>, the type of source, constrained the
inferred definition-site variance of WList to be invariance

1 The inferred type parameter passed in the invocation of the generic
method addAndLog is E. Thus, the first argument type of addAndLog is
Iterator<E>.

because the inferred definition-site variance of List is in-
variance. Changing the type of source to List<? extends

E>, however, allows the definition-site variance of WList to
be contravariance.2 This contravariance of WList tells us
that it is safe to add the use-site annotation ? super to the
type of strings. Note how this type generalization is done
for different reasons than that of source, earlier: type WList
is inherently contravariant (after earlier refactorings), there-
fore it does not matter how strings is used. In contrast, the
generalization of the type of source was possible only be-
cause of the way source was used in method addAll.

5. The argument entry of the overriding method add is de-
clared on line 23. Our tool infers that Map.Entry is covari-
ant in its first type parameter. Therefore, changing the type
of entry to Map.Entry<? extends K, V> would not cause
a runtime error. Our tool does not apply this update, how-
ever, for the following reasons:

(a) Java (javac) would no longer infer that MapEntryWList.
add overrides WList.add. Because of the ‘@Override’ an-
notation, javac would flag a compilation error.

(b) Removing the ‘@Override’ annotation would seem not
cause a compilation error. Instead since MapEntryWList.add
does not override WList.add, Java now considers that
MapEntryWList.add overloads WList.add, where the ar-
guments types of MapEntryWList.add and WList.add are
Map.Entry<? extends K, V> and Map.Entry<K, V>, re-

2 The occurrence of the type parameter E in the type of the field elems,
declared on line 3, does not constrain the definition-site variance of E

in WList because elems is what is called object-private in the Scala
language [16, Sections 5.2 and 4.5]: elems is not only private to WList

but also only accessed from a this qualifier on line 8.

spectively. However, the erasures [11, Chapter 4.6] of the
type signatures of both methods are the same: Both argu-
ment types erase to Map.Entry. Overloaded methods that
have the same erasure result in a compilation error.

(c) Even if the Java compiler did not flag a compilation error
as a result of generalizing the type of entry, performing
this refactoring is undesirable because it could change
the runtime behavior of the program. Client code that
previously invoked MapEntryWList.add at runtime may
now invoke WList.add instead, since MapEntryWList.add

would no longer override WList.add.

(d) Another option to allowing the type of entry to be
generalized would be to change the parent type decla-
ration of MapEntryWList. Our tool does not add wild-
cards to parent type declarations for a number of rea-
sons that we discuss in Section 4.6. For instance, the most
straightforward generalization would change the parent
type of MapEntryWList to WList<? super Map.Entry<K,

V>>, since we inferred the refactored version of WList to
be contravariant. This change is not legal in Java because
wildcards are not allowed in the outermost type arguments
in parent type declarations in Java. (The type in question
is not a class type but rather a reference type [11, Chapter
4.3].)

Our tool will generalize the type signature of an overridden
method only if all of the methods it overrides and vice versa
can also be generalized, so that all overriding relationships
in the original program are maintained. More generally, our
tool ensures the behavior of programs is preserved.

Although the above example is small, it illustrates how
generalizing types with Java wildcards requires intricate,
tedious, and error-prone reasoning. The complexity of the
refactoring, thus, warrants automation.

3. Background
Our refactoring tool infers definition-site variance to gener-
alize types. The tool safely rewrites Iterator<Animal> to
Iterator<? extends Animal> because it infers Iterator to
be covariant. This section provides a brief background of the
core variance analysis performed for determining wildcard
annotations. Further details can found in past work [1, 2].

3.1 Variance From A Generic Definition
Our tool adds wildcards to applications of a generic that are
inherently variant, based on its definition. Languages sup-
porting definition-site variance enable programmers to de-
clare type parameters of a generic with variance annota-
tions. For instance, Scala [16] requires the annotation + for
covariant type parameters, - for contravariance, and invari-
ance is the default. A well-established set of rules can then
be used to verify that the use of the type parameter in the
generic is consistent with the annotation. We first explain
how definition-site variances of type parameters are con-

+

*

–

o

(covariance)

(bivariance)

(contravariance)

(invariance)

⊔

!

Figure 2. Standard variance lattice.

strained using a slight extension of Java that includes Scala’s
syntax for definition-site variance annotations.

In intuitive terms, definition-site variances are con-
strained by the use of type parameters in certain “positions”.
Each typing position in a generic’s signature has an associ-
ated variance. For instance, method return types are covari-
ant positions and method argument types are contravariant
positions. Type checking the declared variance annotation of
a type parameter requires determining the variances of the
positions the type parameter occurs in. The variance of all
such positions should be at least the declared variance of the
type parameter. The ordering of variance values is presented
in the variance lattice in Figure 2. Consider the following
Java interfaces, where vX , vY , and vZ stand for definition-
site variance annotations.
interface RList<vXX> { X get(int i); }

interface WList<vY Y> { void set(int i, Y y); }

interface IList<vZZ> { Z setAndGet(int i, Z z); }

The variance vX is the (imaginary) declared definition-site
variance for type variable X of interface RList. If vX = +,
the RList interface type checks because X does not occur in
a contravariant position. If vY = +, the WList interface does
not type check because Y does occur in a contravariant posi-
tion (the second argument type in set method), but vY = +
implies Y should only occur in a covariant position. IList
type checks only if vZ = o because Z occurs in both a co-
variant and a contravariant position.

Intuitively, RList is a read-only list: it only supports re-
trieving objects. The return type of a method indicates this
“retrieval” capability. Retrieving objects of type T can be
safely thought of as retrieving objects of any supertype of
T. A read-only list of Ts (RList<T>) can always be safely
thought of as a read-only list of some supertype of Ts
(RList<S>, where T <: S). Thus, a return type is a covari-
ant position and RList is covariant in X. Similarly, WList is
a write-only list, and is intuitively contravariant. Objects of
type T can be written to a write-only list of Ts (WList<T>),
but also to a write-only list of Ss (WList<S>), where T <: S,
because objects of type T are also objects of type S. Hence, a
WList<S> can safely be thought of as a WList<T>, if T <: S.

On the contrary, it would not be safe to assume WList

is covariant because the subsumption (is-a) principle would
be violated. (Informally, anything one can do with the su-
pertype, one can also do with the subtype.) Assuming, for

example, a WList<Dog> is a WList<Animal> violates the sub-
sumption principle because a WList<Animal> can add a Cat

to itself, but a WList<Dog> cannot without introducing a pos-
sible runtime type error.

Finally, C<X> is bivariant implies that C<S><:C<T> for any
types S and T. Previous work [1] discusses several interesting
interface definitions that are inherently bivariant.

3.2 Computing Most General Definition-Site Variance
We infer definition-site variance by first generating a
set of constraint expressions on definition-site variances.
Definition-site variances are referred to in expressions by
variables of the form dvar(X; C), where C is the name of a
generic definition and X is the name of a type parameter of
the generic. We then compute the maximum values for the
variables that satisfy the constraint expressions. This com-
putation requires fixed point iteration as variance variables
can be recursively constrained. Consider the following two
classes, for example:

class C<X> {

X foo (C<? super X> csx) { ... }

void bar (D<? extends X> dsx) { ... }

}

class D<Y> { void baz (C<Y> cx) { ... } }

The maximum variances for the type parameters of classes
C and D are constrained by the variances of the type expres-
sions that occur in the class signatures. We would generate
the following constraints for classes C and D:

foo return type =⇒ dvar(X; C) v +⊗ +︸︷︷︸
var(X;X)

foo arg type =⇒ dvar(X; C) v −⊗ (dvar(X; C) t −)︸ ︷︷ ︸
var(X;C<-X>)

bar arg type =⇒ dvar(X; C) v −⊗ (dvar(Y; D) t+)︸ ︷︷ ︸
var(X;D<+X>)

baz arg type =⇒ dvar(Y; D) v −⊗ (dvar(X; C) t o)︸ ︷︷ ︸
var(Y;C<oY>)

The function var(X; T) assigns a variance value to each type
expression T with respect to type variable X. Method foo’s
return type, X, results in the upper bound +⊗ var(X; X) be-
cause the variance of its type var(X; X) was transformed us-
ing the operator ⊗, by covariance, the variance of the posi-
tion that the type occurs in. (Section 3.3 provides details of
the ⊗ operator.) Also, existing wildcards in the code (e.g.,
“? extends X” for D) result in a lattice join operation (t) of
the variance of the wildcard and the definition-site variance
of the generic (e.g., “dvar(Y; D) t+”) [1, 2].

Solving the constraints (i.e., computing the greatest fixed-
point) for the above example yields dvar(X; C) = + and
dvar(Y; D) = −.

3.3 Variance Transformation
The variance of type variables is transformed by the vari-
ance of the context that the variables appear in. Figure 3
summarizes the behavior of the transform operator⊗. Given
two generic types A<X> and B<X> with variances vA and vB
for their parameters, we can compute the variance of type
A<B<X>> with respect to X as v = vA⊗vB . To sample why the
definition of the transform operator makes sense, we show
one example case:

Case +⊗− = − : This means that var(X; C<E>) = −
when generic C is covariant in its type parameter and type
expression E is contravariant in X. This is true because, for
any two types T1 and T2, T1 <: T2

=⇒ E[T2/X] <: E[T1/X] (contravariance of E)

=⇒ C<E[T2/X]> <: C<E[T1/X]> (covariance of C)
=⇒ C<E>[T2/X] <: C<E>[T1/X]

Hence, C<E> is contravariant with respect to X.

+⊗+ = + −⊗+ = − ∗ ⊗+ = ∗ o⊗+ = o
+⊗− = − −⊗− = + ∗ ⊗ − = ∗ o⊗− = o
+⊗ ∗ = ∗ − ⊗ ∗ = ∗ ∗ ⊗ ∗ = ∗ o⊗ ∗ = ∗
+⊗ o = o −⊗ o = o ∗ ⊗ o = ∗ o⊗ o = o

Figure 3. Definition of variance transformation: ⊗. This
operator is commutative.

3.4 Rewrites using Definition-Site Inference
Given inferred definition-site variances, the refactoring tool
generalizes type signatures by replacing specified use-site
annotations with inferred use-site annotations. Each inferred
use-site annotation is the inferred definition-site variance of
the generic joined with the specified use-site annotation.
Consider classes C and D from Section 3.1 that were in-
ferred to be covariant and contravariant, respectively, in their
type parameters. Given these inferred def-site variances, the
refactoring tool can safely rewrite those definitions to the
code below. (Again, the inferred variances are lattice-joined
with the variance of the wildcard that pre-existed in the code.
E.g., covariance joined with contravariance becomes bivari-
ance and the inferred variance is ∗, corresponding to the
wildcard ‘?’.) All client code of classes C and D would still
compile. The classes have been generalized without sacrific-
ing type safety.
class C<X> {

X foo (C<?> csx) { ... }

void bar (D<?> dsx) { ... }

}

class D<Y> { void baz (C<? extends Y> cx) { ... }}

4. Type Influence Flow Analysis
The act of generalizing occurrences of types in a program
introduces a tradeoff. On the one hand, we want to assist

programmers with generalizing their interfaces in a type safe
manner—i.e., to replace type occurrences with more general
types. More general types for the interface of a class, how-
ever, entail fewer operations for implementations of this in-
terface. For instance, promoting the type of an object from
List<String> to the type List<? extends String> results
in the inability of that object to add String objects to itself.
Furthermore, in Java, an overriding method must have the
same type signature as the overridden method. Hence, gen-
eralizing the types in a method’s signature also restricts the
ability of subclasses to provide alternative implementations.

To enable library designers to manage this tradeoff, our
tool allows users to choose which declarations to update in-
stead of always generalizing all (rewritable) types. A refac-
toring tool should not introduce new compilation errors for
practicality and should preserve the semantics of the origi-
nal program. Thus, automating the update of a fragment of
the program requires a flow analysis to determine, given a
type occurrence to update, the set of other type occurrences
that also need to be updated. We say that a declaration A
influences a declaration B if making A’s type more gen-
eral requires making B’s type more general. Moreover, we
coin the term “type influence flow analysis” (or just “influ-
ence analysis”) for the program analysis computing (an over-
approximation of) this information.

We implement our influence analysis by building a di-
rected flow graph where nodes represent declarations in the
program. A flow graph is constructed so that if declaration A
influences declaration B, then the graph will contain a path
from A to B. Thus, our global “influence” relation is just the
transitive closure of primitive influences (directed edges in
the flow graph) induced by the program text. For example,
an edge from variable A to variable B would be generated
for an assignment expression from A to B: generalizing the
type of A would require B’s type to also be generalized.
Subsequent subsections provide further details.

4.1 Influence Nodes
Our refactoring tool generalizes interfaces by generalizing
types of declarations. Nodes in our flow graph represent
declarations in the program.

The Java language constructs that can be nodes in
our influence graph are given by the syntactic category
InfluenceNode:

InfluenceNode ::= MethodDecl | Variable
Variable ::= VariableDeclaration

| FieldDeclaration

| ParameterDeclaration

MethodDecl, VariableDeclaration, FieldDeclaration and
ParameterDeclaration are the syntactic entities that their
names suggest, as defined in the JLS [11]. Both static
and instance fields are instances of FieldDeclarations.
VariableDeclarations are local variable declarations,
which occur in blocks, method bodies, initialization state-

ments of for-loops, etc. Formal value arguments from meth-
ods and constructors are ParameterDeclarations. Argu-
ments of catch blocks are ignored; they cannot be paramet-
ric types [11, Chapter 8.1.2]. MethodDecl nodes in the flow
graph are used to capture the influences on return types of
method declarations. Return types may need to be general-
ized if the types of variables occurring in return statements
are generalized. Generalizing the return type of a method
can influence the type of other declarations; for instance, a
variable can be assigned the result of a method invocation.

Auxiliary functions used in this presentation are defined
over a language similar to Featherweight Generic Java [12],
which we will call FGJ*, rather than the full Java language,
in order to focus the presentation on the essential elements.
FGJ*’s syntax is presented in Figure 4. We skip the defi-
nitions of some syntactic elements such as statements (s)
and names of type variables (X or Y) or methods (m). We
follow the FGJ convention of using C to abbreviate the
extends keyword and A denotes the possibly empty vector
A1, A2, . . . , An. Reference types allow use-site annotations,
which denote wildcard annotations; types C<? extends T>

and C<T>, for example, are expressed in the syntax as C<+T>

and C<oT>. Although method invocations in the FGJ* syn-
tax contain specified type arguments (T) and a qualifier
component (“e.”), we allow invocations where both can be
skipped.

v, w ::= + | − | ∗ | o use-site variance

T, U, S ::= X | N | R types

N ::= C<T> class types

R ::= C< v T> reference types

L ::= class C<XC U> C N { T f; M } class declaration

M ::= <XC U> T m(T x) { s } method declaration

e ::= x | e.f | e.<T>m(e) | new N(e) expressions

s ::= e1 = e2; | . . . statements

X, Y ::= . . . type variables

x, y ::= . . . expression variables

Figure 4. FGJ* Syntax

Auxiliary functions are defined in Figure 5. Some func-
tions are defined only informally because their precise def-
initions are either easy to determine or are not the focus of
this paper. For example, Lookup(m; e) returns the declaration
of the method being called (statically) by the method invo-
cation m(e).3 Detailed definitions of look up functions and
other auxiliary functions that are omitted here can be found
in [2, 12].

3 Changing wildcard annotations does not affect method overloading reso-
lution because the type signatures of two different overloaded methods are
not allowed to have the same erasure.

nodesAffectingType: (representative rules)

Lookup(m; e) = M
returnTypeDependsOnParams(M)

nodesAffectingType(<T>m(e)) =
∪|e|i=1nodesAffectingType(ei) ∪ {M}

(N-GENERICMETHOD)

Lookup(m; e) = M
¬returnTypeDependsOnParams(M)

nodesAffectingType(<T>m(e)) = {M}
(N-MONOMETHOD)

e 6= m(e)

nodesAffectingType(e) =
accessedNodes(e)

(N-NONMETHODCALL)

destinationNode: (representative rules)

<S>m(e) ∈ P
Lookup(m; e) = <YC U> T m(T x) { . . . }

destinationNode(ei) = xi

(D-METHODCALL)

eL = eR ∈ P
varDecl(eL) = x

destinationNode(eR) = x

(D-ASSIGNMENT)

“return e ;” ∈ P
enclosingMethod(e) = M

destinationNode(e) = M
(D-RETURN)

Lookup(m; e) = the declaration of the method being called (statically) by the invocation of method m with arguments e.
returnTypeDependsOnParams(M) ≡ M is a generic method with a type parameter X that syntactically occurs in both the
return type and in an argument type.
varDecl(e) = the declaration referred to by expression e (e.g. varDecl(x.f) = declaration of field f).
accessedNodes(e) = the set of declarations accessed in expression e (e.g. accessedNodes(x.f) = {x, f}).
enclosingMethod(e) = the enclosing method of e (this function is partial).
hierarchyMethods(M) = the set of methods that either override M or are overridden by M .
hierarchyParams(x) = {ith parameter of M ′ |M ′ ∈ hierarchyMethods(M)}, where x is the ith formal parameter of M .
P is the input Java program and, “A ∈ P ” denotes expression or statement A syntactically occurs in program P .

Figure 5. Auxilary Functions

4.2 Flow Dependencies from Qualifiers
The semantics of an object-oriented language like Java en-
tails intricate flow dependencies from qualifiers. The qual-
ifier of a Java expression is the part of the expression
that identifies the host (object, type definition, or pack-
age) from which the member is accessed. In the expres-
sion someString.charAt(0), for example, the subexpres-
sion someString is the qualifier of the method invocation
charAt(0). Generalizing the type of a qualifier of a method
invocation may require generalizing the type signature of the
method accessed. In particular, we need to add edges in the
flow graph from qualifiers (declarations accessed in quali-
fiers) to formal method arguments when analyzing a method
invocation. The following example motivates these depen-
dencies:

interface C<X> { void foo(D<X> arg); }

interface D<Y> { int getNumber(); }

class Client {

void bar(C<String> cstr, D<String> dstr) {

cstr.foo(dstr);

}

}

The generic interfaces C and D are both safely bivariant. D
is clearly bivariant because its type parameter does not ap-
pear in the definition of D. C is bivariant because its variance
is only constrained by D, which is also bivariant.

Suppose the argument arg in method foo above is not
rewritable (i.e., its type remains D<X>). Also, consider rewrit-

ing the Client class and assume that all method arguments
in Client are rewritable. Then it seems that the types of
variables cstr and dstr in bar are rewritable to C<?> and
D<?>, respectively, by the bivariance of both interfaces C and
D. However, this would cause bar to generate the following
compilation error (modulo generated numbers):
foo(D<capture#274 of ?>) in C<capture#274 of ?>

cannot be applied to (D<capture#582 of ?>)

Effectively, the error states that the unknown type that the
“?” stands for in C<?> is not known to be the same as the
unknown type that the “?” stands for in D<?>.

This error would have been avoided if the type of arg in
method foo was rewritten. More generally, wildcard anno-
tations need to be added in type definitions in order for the
inferred definition-site variance to support all of the opera-
tions of the class. In the case of interface C, an instance of
type C<?> cannot access the method foo unless the type of
arg is changed to D<?>.4 Therefore, we need to add an in-
fluence edge from the qualifier cstr to the formal parameter
arg of method foo.

4.3 Expression Targets
Expressions may access variables that are declared with
types that were generalized. In the refactored code, the
type of an expression can change as a result of chang-
ing the type of a variable or declaration accessed by

4 Without changing the type of arg to D<?>, invoking foo on an instance
of C<?> type checks only if null is passed as an argument.

the expression. In the motivating example of Section 2,
the type of the parameter source changes from List<E>

to List<? extends E> in the refactored code. The return
type of method List<E>.iterator is Iterator<E>. Updat-
ing the type of source causes the type of the expression
source.iterator() on line 8 to change from Iterator<E>

to Iterator<? extends E>. In turn, changing the type of ex-
pression source.iterator() requires modifying the type of
method parameter itr on line 11.

The essence of determining type influences emerg-
ing from expressions is described by two key func-
tions: nodesAffectingType(e) computes the set of declara-
tions accessed in expression e that can affect the type
of e. destinationNode(e) is a partial function that re-
turns the declaration that is influenced by the type of e.
Figure 5 contains the definitions of these functions for
the most important (and representative) elements of the
FGJ* syntax. Considering the motivating example, for in-
stance, nodesAffectingType(source.iterator()) = {source,
List.iterator} and destinationNode(source.iterator())
= WList.addAndLog.itr. Because the expression source.

iterator() is the first argument in the method call to
addAndLog, the first formal parameter, itr, of addAndLog is
the destination node of source.iterator(). Influence edges
are added from nodes in nodesAffectingType(e) to the node
returned by destinationNode(e). These edges signal the de-
pendencies caused by the expression in a context such as a
method invocation.

4.4 Dependencies from Inheritance
In Java, an overriding method in a subclass is required to
have the same argument types as the overridden method in
the superclass. We add corresponding edges between method
declarations in the influence flow graph so that overrides re-
lationships are preserved in the refactored code. In the moti-
vating example, the add method in MapEntryWList (line 23)
overrides the add method in the super class WList. Our anal-
ysis infers that the type of MapEntryWList.add’s argument
influences the type of WList.add’s argument, to preserve the
override. In general, we add an edge from a parameter to its
corresponding parameter in an overriding method. An edge
in the reverse direction is also added, since generalizing the
parameter type in the overridden method requires updating
the corresponding parameter’s type in the subclass to pre-
serve the override. Adding edges to method parameters in
subclasses, however, requires a whole-program analysis: All
of the subclasses of the input class must be known to find all
of the overridding methods.

4.5 Algorithm
Algorithm 1 contains the pseudo-code of our algorithm for
computing the type influence flow graph. The algorithm im-
plements the analyses described in the preceding subsections
using functions defined in Figure 5. Given the flow graph,

Algorithm 1 Algorithm computing influence flow graph
Input: Java program P
Output: Flow graph G on Java declarations

// Analysis from Section 4.2
1: for each method call <T>m(e) ∈ P do
2: qualifierDecl← varDecl(e)
3: <YC U> T m(T x) { . . . }← Lookup(m; e)
4: Add edge (qualifierDecl, xi) to G, for each xi ∈ x.
5: end for

// Analysis from Section 4.3
6: for each expression e ∈ P do
7: D ← destinationNode(e)
8: Add edge (N,D) to G,

for each N ∈ nodesAffectingType(e).
9: end for

// Analysis from Section 4.4
10: for each method declaration M ∈ P do
11: Add edge (M ′,M) to G,

for each M ′ ∈ hierarchyMethods(M).
12: for each parameter x ∈ formalParams(M) do
13: for each parameter y ∈ hierarchyParams(x) do
14: Add edge (y, x) to G
15: end for
16: end for
17: end for
18: return G

determining if the type of one declaration influences another
is performed by checking for existence of a path in the graph.

4.6 Non-rewritable Overrides
The motivating example illustrates the need to determine
when types cannot be further generalized. Clearly, types
of declarations from binary files (e.g., jar files) are not
rewritable because we do not have access to the source
code.5 Consider the example interface java.util.List<E>,
which declares a method iterator with return type
Iterator<E>. A class implementing List<E> cannot over-
ride iterator with a return type of Iterator<? extends E>

even though Iterator is covariant in its type parameter. We
use the influence graph to determine if a declaration can in-
fluence a non-rewritable declaration. Any declaration that
can reach a non-rewritable declaration in the graph is also
considered to be non-rewritable.

The motivating example shows that we must clas-
sify some declarations from source as non-rewritable.
MapEntryWList.add’s argument type, Map.Entry<K, V>, on
line 23 is a parameterized type, which could be further gen-
eralized safely to Map.Entry<? extends K, V> by the co-
variance of Map.Entry in its first type parameter. The argu-

5 Bytecode is often as malleable as source code. In principle our approach
could apply to bytecode. However, this would not address the issue of un-
available code—native code would still be inaccessible—and, furthermore,
Java bytecode does not preserve full type information for generics.

ment’s type in the overridden method, WList.add, could not
because it is just a type variable (E). Generally, we classify
an argument type or return type (of a non-static and non-final
method) as not rewritable if the type is just a type variable.

Discussion: parent types are not rewritable. As men-
tioned in Section 2, our analysis does not generalize parent
type declarations (i.e., extends and implements clauses). We
chose not to rewrite parent types in order to improve the us-
ability of the refactoring tool and to simplify the analysis.
We next discuss the rationale in detail.

If we were to generalize parent types, the influence anal-
ysis would be far less intuitive to users of the refactoring
tool as dependencies would no longer be traceable by flows
from only variable/member declarations. Rewriting parent
types would significantly complicate the analysis, may cause
decidability issues, and would not significantly increase the
number of declarations that could be rewritten. We explain
the issues using the example in Figure 6, which is a simpli-
fied version of a code segment from the Apache collections
library [3].

Consider rewriting the type OrderedIterator<Map.

Entry<K,V>> in the implements clause of EntrySetIterator.
We inferred that OrderedIterator is covariant in its type.
However, rewriting OrderedIterator<Map.Entry<K,V>> to
OrderedIterator<? extends Map.Entry<K,V>> in a parent
type declaration is not legal in Java since wildcards are not
allowed in the outermost type arguments in parent type dec-
larations [11, Chapter 4.3].

Now consider rewriting the first parent-interface type
to OrderedIterator<Map.Entry<? extends K,V>>. The lat-
ter is a class type and legal in a parent type declara-
tion. This causes a compile error because it implies that
EntrySetIterator<K,V> implements two different instanti-
ations of the same generic: Iterator<Map.Entry<? extends

K,V>> and Iterator<Map.Entry<K,V>>; Figure 6 also shows
how this was derived.6

Another possibility is to rewrite the second parent-
interface type to ResettableIterator<Map.Entry<?

extends K,V>> in addition to promoting the first parent-
interface type to OrderedIterator<Map.Entry<? extends

K,V>>. Then, EntrySetIterator<K,V> only implements
a single instantiation: Iterator<Map.Entry<? extends

K,V>>. However, this is safe only if ResettableIterator

is covariant in its type parameter. If ResettableIterator is
invariant, then ResettableIterator<Map.Entry<K,V>> and
ResettableIterator<Map.Entry<? extends K,V>> are not
subtype-related. We only want to replace types with more
general supertypes without sacrificing functionality. Hence,
determining if one declared parent type can be generalized
not only depends on all the other parent types but also on
whether the argument types being generalized are passed
to covariant type constructors. (Adding wildcards to a type

6 Interface ResettableIterator<E> also extends Iterator<E>.

used to parameterize another is safe only if the parameter-
ized type is covariant.)

Further complicating matters, it has been shown in past
work [14, 18] that introducing the wildcard annotation “?
super” in parent type declarations makes deciding the sub-
typing relation (determining whether one given type is a
subtype of another given type) highly likely undecidable.7

Rewriting parent types would then require our tool to check
if the generalized parent type would be within a decidable
fragment. We expect that most programmers would find the
dependencies involving parent types to be severely non-
intuitive. This makes it difficult for users to choose which
types they want to rewrite and the types they want preserved.
To make the influence analysis more intuitive and avoid de-
cidability issues, we restrict rewriting to types of variable
declarations and of members of classes and interfaces.

5. Method Body Analysis
We can infer safe definition-site variances of type parame-
ters solely from the interfaces or member type signatures of
a generic. Only analyzing type signatures, however, is more
restrictive than necessary because a programmer can spec-
ify a more specialized type than needed. The class below
presents a non-trivial example.

class Body<X extends Comparable<X>> {

int compareFirst(List<X> lx, X other) {

X first = lx.get(0);

return first.compareTo(other); } }

Only analyzing the interface of the Body class restricts
the greatest definition-site variance we can infer for the type
parameter to be invariance. The variance of Body is con-
strained by the invariance of List in the first argument of
the compareFirst method. By taking into account how vari-
ables are actually used in a program, however, we may detect
when the type of a variable can be promoted to a more lib-
eral type. In the compareFirst method body, only the get

method is invoked on the lx argument. In the type signature
of get, the type parameter of List occurs only in the return
type, a covariant position. Hence, only the covariant version
of List is required for the lx variable, and its type can be
promoted to List<? extends X>.8 Assuming this new type
for lx, we can also safely infer that the definition-site vari-
ance of Body is now contravariance. We shall use this rea-
soning for illustration next.

High-level picture. To infer use-site variance, we generate
a set of constraint inequalities between variance expressions
in similar fashion to that described in Section 3.2. Use-site

7 Subtyping in the presence of definition-site variance and contravariant
type constructors in parent type declarations was shown to be undecidable
in [14]. [14, Appendix A] contained simple Java programs with “? super”
annotations in parent types that crashed Java 1.5 and 1.6 compilers (javac)
when checking example subtype relations. [18] identified a decidable frag-
ment that does not allow “? super” in parent types.
8 The type signature of method List<X>.get = (int) → X.

public interface OrderedIterator<E> extends Iterator<E>
{
E previous();

}
protected static class EntrySetIterator<K, V>
extends LinkIterator<K, V>
implements OrderedIterator<Map.Entry<K, V>>,

ResettableIterator<Map.Entry<K, V>>
{
public Map.Entry<K, V> previous() { ... }

}

EntrySetIterator<K,V>

<: ResettableIterator<Map.Entry<K,V>>
<: Iterator<Map.Entry<K,V>>.

EntrySetIterator<K,V>

<: OrderedIterator<Map.Entry<? extends K,V>>

<: Iterator<Map.Entry<? extends K,V>>.

Figure 6. Simplified code example from Apache collections library on the left. Subtyping (interface-implements) relationships
on the right, if we annotate K with “ ? extends” only in the parent type OrderedIterator<Map.Entry<K,V>>.

variances can now change (they integrate the result of a
method body analysis, whereas earlier they consisted of only
the wildcard annotation on the type). Hence, we add to the
syntax of variance expressions a new kind of variable: If y is
a method argument declared with type C<vT> and Xi is the ith

type parameter of generic C, then uvar(Xi; C; y) denotes the
inferred use-site annotation for the ith type argument in the
type of y.

Treating use-site variances as variables, in turn, relaxes
constraints on definition-site variances. Consider the con-
straint on the inferred def-site variance of Body’s type pa-
rameter that is generated from analyzing the type of method
argument lx if we only analyzed type signatures.

dvar(X; Body) v −⊗ var(X; List<oX>)

= −⊗ (dvar(E; List) t o)

= −⊗ dvar(E; List) = −⊗ o = o,

where E is the type parameter of List.

dvar(E; List) refers to the definition-site variance of the
type parameter E of the List interface; it can only (safely)
be invariance. This upper bound constrains dvar(X; Body)
to invariance and is too restrictive considering the limited
use of lx. Our method body analysis would replace this
constraint on dvar(X; Body) with the following more relaxed
one. The specified use-site annotation o has been joined with
uvar(E; List; lx). Constraints on this variable are generated
based on the limited use of lx. In this example, we would
infer uvar(E; List; lx) = + and dvar(X; Body) = −.

dvar(X; Body) v −⊗
(
dvar(E; List) t o t uvar(E; List; lx)

)

= −⊗ (o t o t uvar(E; List; lx))

= −⊗ uvar(E; List; lx)

Further details of the constraint generation process per-
formed during the method body analysis can be found in
Section A of the Appendix.

6. Type Influence Graph Optimizations
As the number of declarations in the flow graph increases,
so may the number of unmodifiable declarations. In turn,
fewer declarations will be rewritten because more paths to

unmodifiable declarations will exist in the graph. To al-
low more rewritable declarations to be detected, the anal-
ysis ignores (i.e. does not add to the flow graph) declara-
tions that are not affected by the generalizations performed
by the tool. It is safe to ignore such declarations because,
even if they were rewritable, their types would not change
from rewrites performed by the refactoring tool. Consider-
ing the java.util.List.size method, for example, which
returns an int, adding wildcards to any instantiation of the
List interface would never cause the size method to return
anything but an int. The expression l.size() returns int,
whether l has type List<Animal> or List<?>, for instance.

The influence analysis also ignores declarations of pa-
rameterized types by using results from the definition-site
and use-site variance inference. Using the inference we sep-
arate parameterized types into two categories. A variant
type is a parametric type C<vT>, where generic C is safely
(definition-site) variant (covariant, contravariant, or bivari-
ant) in at least one of its type parameters; otherwise, we call
C<vT> an invariant type. Because Iterator is covariant in its
type parameter, for example, Iterator<Animal> is a variant
type. Only variant types can be refactored with wildcards,
when inferring definition-site variance solely from type sig-
natures.

The influence analysis ignores declarations of the follow-
ing types. Below we list the types and explain why they are
safe to ignore.

1. Primitive types (e.g., int, char) and monomorphic class
types (e.g., String, Object). These types are not affected
by adding wildcards.

2. Type variables that are declared to be the types of decla-
rations that do not affect method overriding. These types
cannot be further generalized by wildcards. For example,
a field or local variable declared with a type that is a type
variable would not be added to the flow graph. However,
as explained in Section 4.6, we cannot ignore argument
types and returns types of non-static and non-final methods
if they are just type variables. Declarations of these types
are added to the flow graph.

3. Parametric types that are only specified with bivariant use-
site annotations (e.g., List<?>). These types cannot be fur-

ther generalized no matter the rewrites performed.

4. Parametric types that only contain specified use-site anno-
tations that are greater-than or equal-to (according to the
ordering of Figure 2) the inferred use-site annotations. The
rewrites performed by the refactoring tool never cause the
type of any declaration to require a use-site annotation that
is greater-than the inferred use-site annotation. The inferred
definition-site variances only assume that the inferred use-
site annotations are written in type definitions. As a result,
when inferring definition-site variance from only type sig-
natures, variables declared with invariant types are also ig-
nored; in this case, adding a wildcard to a variant type will
never cause a wildcard to be added to an invariant type.
For example, assuming Iterator and List are covariant
and invariant, respectively, changing a declaration’s type
from Iterator<Animal> to Iterator<? extends Animal>

will never require a wildcard to be added to the type of a
variable declared with List<Animal>. In the definition of
Iterator, List could not be applied to Iterator’s type pa-
rameter without causing Iterator to be invariant and no
longer be covariant in its type parameter. The variance anal-
ysis ensures that only parameterized declarations with an
over-specified use-site annotation need to be rewritten.

When performing the method body analysis to infer use-
site annotations (as described in Section 5), the inferred use-
site annotation in an invariant type may be greater than in-
variance. For example, a method argument may be declared
with an invariant type (List<Animal>), but its use of the in-
variant type may be limited and may support a greater use-
site annotation than specified in the original program. If a
declaration has an inferred use-site annotation that is greater
than the specified annotation, then that declaration will be
added to the flow graph. As a result, performing the method
body analysis may cause more declarations to be added to
the flow graph than with the signature-only analysis because
now some declarations of invariant types may be added to
the graph. In turn, the number of rewritable declarations may
decrease.

7. Evaluation
Our refactoring tool allows users to modularly generalize
classes by selecting which declarations (of local variables,
fields, method arguments, and return types) to rewrite. Para-
metric types are generalized by adding wildcard annotations
based on inferred definition-site variances.

Past work [1] showed that the majority (53%) of inter-
faces and a large proportion (27%) of classes in popular,
large Java generic libraries are variant even though they
were not designed with definition-site variance in mind. This
demonstrates the potential impact of the refactoring tool if
all declarations were rewritable even for users who are not
familiar with definition-site variance.

Not all declarations are rewritable, however, as discussed
in previous sections. Changing the type of one variable, for
example, may require changing the type of a method argu-
ment that is not declared in available source code. To eval-
uate the potential impact of the refactoring tool, we cal-
culated how many declarations of parameterized types are
rewritable. We applied the refactoring tool to six Java li-
braries, including the core Java library from Oracle’s JDK
1.6, i.e., the classes and interfaces of java.*. The other li-
braries are JScience [9], a Java library for scientific com-
puting; Guava [4], a superset of the Google collections li-
brary; GNU Trove [10]; Apache Commons-Collection [3];
and JPaul [17], a library supporting program analysis.

The results of our experiment appear in Figures 7 and 8.
Overall, we found significant potential for generalizing
types, even under the constraints of our flow analysis, which
only allows generalization if the type in question does not
influence unmodifiable library types. When considering all
parameterized types with a method body analysis, 73% of
“parameterized decls” or “p-decls” are rewritable or do not
influence an unmodifiable type. Figure 8’s table contains
statistics for “variant decls” or “V-Decls”, which are the sub-
set of declarations that are declared with variant types. The
majority of variant declarations (57%) can also be rewritten.

“Rewritten P-decls” (and V-decls) are parameterized dec-
larations that not only can be rewritten with wildcards but
were also actually generalized by the tool because they
contain a specified use-site annotation that is less general
than the corresponding inferred use-site annotation. For ex-
ample, a rewritable declaration can be declared with type,
Iterator<? extends Animal>; this type does not require a
rewrite, however, because the inferred use-site annotation,
+, is not greater than the specified use-site annotation, +.

Even in these sophisticated generic libraries written by
experts, who are more disciplined with specifying use-site
annotations, we found significant potential for generalizing
types. Under the most conservative scenario (considering all
parameterized types, examining only type signatures), 11%
of all the types that appear anywhere in these libraries are
less general than they could be! This number grows to 34% if
only variant types are considered. Programmers can use our
refactoring to safely perform such rewrites. In these libraries,
some variant types were used with more discipline, such
as the interface com.google.common.base.Function<F,T>,
which is contravariant in its “argument” type F

and covariant in its “return” type T. In the class
com.google.common.util.concurrent.Futures, for exam-
ple, for many declarations of type Function, program-
mers specified wildcard annotations to reflect the in-
ferred definition-site variances (e.g., Function<? super

I, ? extends O>). Other variant types had many decla-
rations where use-site annotations were skipped, such as
org.apache.commons.collections15.Transformer<I,O>,
java.util.Iterator<E>, and java.util.Comparator<T>.

Library # Parameterized # Rewritable Rewriteable Rewritten Rewritten Flowsto Flowsto-R
Decl Total P-Decl Total P-Decl % Total Percentage Avg. Size Avg. Size

Java

classes 4900 4284 87% 569 12% 61.10 1.23
4900 4193 86% 584 12% 61.37 1.16

interfaces 170 153 90% 20 12% 39.91 2.75
170 148 87% 34 20% 40.08 2.76

total 5070 4437 88% 589 12% 60.39 1.29
5070 4341 86% 618 12% 60.66 1.21

JScience

classes 1553 1042 67% 217 14% 52.04 5.42
1553 1017 65% 229 15% 54.59 5.49

interfaces 56 53 95% 43 77% 10.21 0.66
56 53 95% 44 79% 10.27 0.66

total 1609 1095 68% 260 16% 50.59 5.19
1609 1070 67% 273 17% 53.05 5.25

Apache

classes 3357 2567 76% 565 17% 119.81 0.69
3357 2491 74% 600 18% 122.31 0.72

interfaces 46 38 83% 1 2% 84.61 0.61
46 38 83% 16 35% 84.63 0.61

total 3403 2605 77% 566 17% 119.33 0.69
3403 2529 74% 616 18% 121.80 0.71

Guava

classes 5794 3973 69% 355 6% 289.27 0.97
5794 3690 64% 384 7% 313.20 0.93

interfaces 69 57 83% 2 3% 134.59 3.70
69 56 81% 2 3% 154.91 3.73

total 5863 4030 69% 357 6% 287.45 1.01
5863 3746 64% 386 7% 311.34 0.97

Trove

classes 953 531 56% 127 13% 13.93 0.26
953 531 56% 139 15% 13.95 0.28

interfaces 0 0 0% 0 0% N/A N/A
0 0 0% 0 0% N/A N/A

total 953 531 56% 127 13% 13.93 0.26
953 531 56% 139 15% 13.95 0.28

JPaul

classes 1350 1085 80% 137 10% 15.60 0.50
1350 1067 79% 187 14% 15.98 0.53

interfaces 11 11 100% 0 0% 0.73 0.73
11 11 100% 1 9% 0.73 0.73

total 1361 1096 81% 137 10% 15.48 0.50
1361 1078 79% 188 14% 15.86 0.53

Total

classes 17907 13482 75% 1970 11% 139.21 1.28
17907 12989 73% 2123 12% 147.74 1.26

interfaces 352 312 89% 66 19% 58.36 2.23
352 306 87% 97 28% 62.44 2.24

total 18259 13794 76% 2036 11% 137.65 1.30
18259 13295 73% 2220 12% 146.10 1.28

Figure 7. Variance rewrite statistics for all declarations with generic types. Rewritable decls are those that do not affect
unmodifiable code, per our flow analysis. Rewritten decls are those for which we can infer a more general type than the one
already in the code. Shaded results are for the method body analysis, unshaded for the signature-only analysis.

Library # Variant Rewritable Rewritable Rewritten Rewritten
Decls V-Decl Total V-Decl % V-Decl Total V-Decl %

Java

classes 1115 746 67% 563 50%
1115 708 63% 529 47%

interfaces 47 31 66% 20 43%
47 31 66% 21 45%

total 1162 777 67% 583 50%
1162 739 64% 550 47%

JScience

classes 717 349 49% 217 30%
720 350 49% 218 30%

interfaces 51 48 94% 43 84%
51 48 94% 43 84%

total 768 397 52% 260 34%
771 398 52% 261 34%

Apache

classes 1197 759 63% 544 45%
1201 730 61% 532 44%

interfaces 6 2 33% 1 17%
6 2 33% 1 17%

total 1203 761 63% 545 45%
1207 732 61% 533 44%

Guava

classes 1906 1088 57% 355 19%
1906 990 52% 336 18%

interfaces 11 8 73% 2 18%
11 8 73% 2 18%

total 1917 1096 57% 357 19%
1917 998 52% 338 18%

Trove

classes 367 226 62% 127 35%
367 226 62% 127 35%

interfaces 0 0 0% 0 0%
0 0 0% 0 0%

total 367 226 62% 127 35%
367 226 62% 127 35%

JPaul

classes 253 139 55% 137 54%
260 146 56% 144 55%

interfaces 0 0 0% 0 0%
0 0 0% 0 0%

total 253 139 55% 137 54%
260 146 56% 144 55%

Total

classes 5555 3307 60% 1943 35%
5569 3150 57% 1886 34%

interfaces 115 89 77% 66 57%
115 89 77% 67 58%

total 5670 3396 60% 2009 35%
5684 3239 57% 1953 34%

Figure 8. Variance rewrite statistics for declarations with variant types (i.e., using generics that are definition-site variant).
Rewritable decls are those that do not affect unmodifiable code, per our flow analysis. Rewritten decls are those for which we
can infer a more general type than the one already in the code. Shaded results are for the method body analysis, unshaded
for the signature-only analysis. There are slightly more variant decls in the method body analysis because more generics are
variant.

Animal first(List l) { Animal first(List<Animal> l) { Animal first(List<? extends Animal> l) {
Iterator itr = Iterator<Animal> itr = Iterator<? extends Animal> itr =

l.iterator(); l.iterator(); l.iterator();

return (Animal) itr.next(); } return itr.next(); } return itr.next(); }
Original program After Kiezun et al. refactoring After variance refactoring

Figure 9. Refactoring resulting from applying Kiezun et al.’s and then our refactoring tool

Library Signature-Only Method-Body
Runtime Runtime

Java 122.557 132.180
JScience 1.696 2.444
Apache 5.383 6.144
Guava 14.907 18.021
Trove 2.773 2.996
JPaul 0.610 0.973

Figure 10. Time in seconds to infer definition-site variance
of generic type parameters and refactor libraries.

The last two columns in the first table (Figure 7) list the
average sizes of the flows-to sets for parameterized decla-
rations. A flows-to set for a declaration x is the set of dec-
larations that x influences according to our type influence
analysis. The flows-to sizes are quite large (146.1 on av-
erage), showing that manually checking if a declaration’s
type is rewritable is tedious and error-prone. The “Flowsto-
R” column lists the average sizes of flows-to sets only for
declarations that are rewritable. As expected, the rewritable
declarations typically influence fewer declarations than non-
rewritable ones.

To show that our refactoring tool is efficiently usable
(i.e., runs in seconds rather than hours), Figure 10 lists the
runtimes of the refactoring tool for each library for both
types of analyses. Refactoring the JDK only took about two
minutes even though it contains over 198K lines of code,
thousands of parameterized declarations, and 182 declared
generic type parameters to infer definition-site variance for.

8. Comparison to Related Work
We next compare our work to past approaches that infer use-
site variance annotations.

Kiezun et al. [15] offered an automated approach to
adding type parameters to existing class definitions. The in-
troduction of type parameters to a class often requires in-
stantiating generics or determining the type arguments to
instantiate uses of a generic. Kiezun et al.’s approach may
instantiate a generic with a wildcard annotation but only
when it is required, for example, to preserve a method over-
ride. Consider a non-generic class D that (1) extends the
non-generic version of the class TreeSet and (2) contains a
method addAll(Collection c1) that overrides a method in
TreeSet. In the generic version of TreeSet<E>, the addAll

method has the signature addAll(Collection<? extends

E> c2). Class D can be parameterized with type parameter
E and then can extend the generic version, TreeSet<E>. Pre-
serving the method override of addAll requires changing the
method argument c1’s type to Collection<? extends E>.

A new wildcard is introduced only when an existing wild-
card from the original program requires the new wildcard
to preserve the ability to compile the code and to preserve
method overrides. Kiezun et al.’s approach does not infer
definition-site variance and would not introduce a wildcard
if the original program does not access a declaration with a
wildcard in its type. However, Kiezun et al.’s proposed refac-
toring would be a useful preprocessing step to our refac-
toring tool. After classes are parameterized with type pa-
rameters, our tool can take advantage of the variance infer-
ence to add wildcards to support greater reuse. This series of
steps, for instance, could perform the refactoring in Figure 9.
Kiezun et al.’s approach would not add wildcards in this ex-
ample because wildcards are not required for the program
to compile. Our refactoring tool can infer that Iterator is
covariant and that method argument l is only using the co-
variant operations of List in foo’s method body.

Craciun et al. [7, 8] offered an approach to inferring use-
site annotations, where a parametric type is modeled as an
interval type with two bounds: A lower bound and an up-
per bound for stating the types of objects that can be written
to or read from, respectively, an instance of a generic. In
this calculus, supertypes have wider ranges: List<[TL,TU]>
<: List<[SL,SU]>, if SL <: TL and TU <: SU . Types
List<[T,T]>, List<[⊥,T]>, and List<[T,>]> are abbrevi-
ated as List<�T>, List<⊕T>, and List<	T>, where ⊥ and
> are subtypes and supertypes of every type, respectively.
Furthermore, the type of the this reference must be speci-
fied for each instance method in a generic. An example class
in their language is provided below (with the leftmost type
of each signature corresponding to the type of this):

class List<A> {

List<⊕A> | A getFst() { ... }

List<	A> | void setFst(A a) { ... }

public final Comparator<	A> comp;

}

When fields are declared with parametric types instead
of type variables, however, Craciun et al.’s approach does
not infer the greatest use-site variance that supports all of
the available operations. A contravariant instantiation of the
List class above, List<	T>, should be able to read the
comp field as an instance of Comparator<	T>. However,

Craciun et al.’s type promotion technique [7, Section 4.2],
would only be able to read a Comparator<⊕T> from the comp

field of a List<	T>. A Comparator<⊕T> cannot access its
compare method. Furthermore, if a method argument x of
type List<T> was used in the method body only in the as-
signment “Comparator<	T> c = x.comp;”, the use-site an-
notation in the type of x inferred by the approach would be
invariance. Our tool, however, would rewrite the type of x

with a greater (contravariant) use-site annotation; more gen-
erally, our approach infers more liberal use-site variances
when fields are of parametric types.

9. Conclusions
We presented an automated approach to generalizing Java
generics with wildcards. We developed a refactoring tool
that infers definition-site variance and adds wildcard anno-
tations to the types of declarations. It allows users to se-
lect a subset of declarations to generalize and performs a
type influence analysis. The analysis automatically deter-
mines which declarations to generalize and which to ignore.
In six sophisticated Java generic libraries written by experts,
we found that 34% of the uses of variant generics could
have been specified with more general wildcards. The result
of this refactoring is a more general interface that supports
greater software reuse.

Acknowledgments
We gratefully acknowledge funding by the European Union under
a Marie Curie International Reintegration Grant (PADECL) and a
European Research Council Starting/Consolidator grant (SPADE);
and by the Greek Secretariat for Research and Technology under
an Excellence (Aristeia) award (MORPH-PL).

References
[1] J. Altidor, S. S. Huang, and Y. Smaragdakis. Taming the

wildcards: Combining definition- and use-site variance. In
Programming Language Design and Implementation (PLDI),
2011.

[2] J. Altidor, C. Reichenbach, and Y. Smaragdakis. Java
wildcards meet definition-site variance. In Proceedings of
the European Conference on Object-Oriented Programming
(ECOOP), 2012.

[3] Apache. Apache commons-collections library. http://
larvalabs.com/collections/. Version 4.01.

[4] K. Boumillion and J. Levy. Guava: Google core li-
braries for Java 1.5+. http://code.google.com/p/
guava-libraries/. Release 8.

[5] N. Cameron, S. Drossopoulou, and E. Ernst. A model for
Java with wildcards. In European Conf. on Object-Oriented
Programming (ECOOP), 2008.

[6] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell.
F-bounded polymorphism for object-oriented programming.
In Proceedings of the Fourth International Conference on
Functional Programming Languages and Computer Architec-
ture, 1989.

[7] W.-N. Chin, F. Craciun, S.-C. Khoo, and C. Popeea. A flow-
based approach for variant parametric types. In Proceed-
ings of Conf. on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), 2006.

[8] F. Craciun, W.-N. Chin, G. He, and S. Qin. An interval-based
inference of variant parametric types. In Proceedings of the
18th European Symposium on Programming (ESOP), 2009.

[9] J.-M. Dautelle et al. Jscience. http://jscience.org/.
Version 4.3.

[10] E. Friedman and R. Eden. Gnu Trove: High-performance col-
lections library for Java. http://trove4j.sourceforge.
net/. Version 2.1.0.

[11] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The
Java Language Specification. California, USA, 7th edition,
2012.

[12] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. ACM Trans. Program.
Lang. Syst., 23(3):396–450, 2001.

[13] A. Igarashi and M. Viroli. Variant parametric types: A flexible
subtyping scheme for generics. ACM Trans. Program. Lang.
Syst., 28(5):795–847, 2006.

[14] A. Kennedy and B. Pierce. On decidability of nominal sub-
typing with variance. FOOL/WOOD, 2007.

[15] A. Kiezun, M. D. Ernst, F. Tip, and R. M. Fuhrer. Refactoring
for parameterizing Java classes. In Proceedings of the 29th
International Conference on Software Engineering, 2007.

[16] M. Odersky. The Scala Language Specification v
2.9. http://www.scala-lang.org/docu/files/
ScalaReference.pdf, 2014.

[17] A. Salcianu. Java program analysis utilities library. http:
//jpaul.sourceforge.net/. Version 2.5.1.

[18] R. Tate, A. Leung, and S. Lerner. Taming wildcards in Java’s
type system. In Programming Language Design and Imple-
mentation (PLDI), 2011.

A. Method Body Analysis:
Constraints on Use-Site Annotations
The heart of method body analysis is the production of con-
straints bounding use-site variances, uvar(Xi; C; y). These
bounds ensure that the inferred use-site annotation supports
the limited use of y in its enclosing method body. The bounds
on use-site variances can be more relaxed than the bounds on
definition-site variances. A definition-site variance is con-
strained by the variance of all members of a generic. A use-
site variance for a method argument y can be more general
because it needs to be constrained by the variance of only
those members accessed by y in the method body.

Consider the argument source of method addAll from
line 7 in the motivating example (Section 2). The type of
source is List<oE>. When the method body analysis is per-
formed, source’s inferred use-site annotation is the value of
the expression: dvar(E; List) t o t uvar(E; List; source).
The definition-site variance and specified use-site variance
were further relaxed by uvar(E; List; source) to take advan-
tage of the fact that not all members of List were accessed
by source in the method body of addAll. We computed that
only a covariant version of List was required by source;
formally, we computed uvar(E; List; source) = +. In this
case, uvar(E; List; source) was only constrained by the
variance of the type signature of the method List.iterator.
It was the only method from List used and no other uses of
source occurred in the method body. As a result, the only up-
per bound on uvar(E; List; source) is var(E; Iterator<E>)

http://larvalabs.com/collections/
http://larvalabs.com/collections/
http://code.google.com/p/guava-libraries/
http://code.google.com/p/guava-libraries/
http://jscience.org/
http://trove4j.sourceforge.net/
http://trove4j.sourceforge.net/
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://jpaul.sourceforge.net/
http://jpaul.sourceforge.net/

= +. (Since return types are in a covariant position.) This
is the same upper bound on dvar(E; List) that results from
List.iterator alone, but dvar(E; List) also needs to re-
spect other constraints.

Figure 11 contains the constraint generation rules for
uvars and auxiliary functions. The first three (MB) rules
constrain uvar(Y; C; x) by the variance of Y in the (non-static)
members of C accessed by x in its enclosing method body. A
field read is only a covariant use of its type T; var(Y; T) was
not transformed by + in rule MB-FIELDREAD because + is the
identity element on the transform operator ⊗. Note that this
constraint also occurs for definition-site variances; see rule
W-CLS from [2, Figure 5] for details.

Constraints with uvars are generated from method argu-
ments using the auxiliary function localvar. localvar may re-
turn an expression with a uvar to signal that a use-site anno-
tation can be inferred. localvar is not recursive and uvars are
only generated for top-level use-site annotations. We chose
not to generalize use-site annotations in nested types for sim-
plicity.

Section 5 did not need to mention localvar to describe the
method body analysis at a high level. However, the actual
upper bound generated for dvar(X; Body) is −⊗ localvar(X;
List<oE>; lx) = −⊗

(
dvar(E; List)totuvar(E; List; lx)

)
,

so the initial upper bound expression simplifies to the ex-
pression previously stated.

localvar returns an expression with a uvar for a method
argument x if it is declared with a parametric type and if
it satisfies hierarchyMaybeGeneralized(x). hierarchyMaybe-
Generalized(x) is imposed to help preserve method over-
rides in refactored code. Use-site annotations in each po-
sition must be the same in overridden/overriding methods.
We do not infer use-site annotations if an overridden method
is not available from source. We also do not infer use-site
annotations for x if one of its corresponding parameters
from a overridden/overriding method is not declared with
a parametric type of the same generic. One such example is
method argument entry declared on line 23 from Section 2.
Changing a use-site annotation in the type of entry would
cause the add method of MapEntryWList to no longer over-
ride add in WList. When hierarchyMaybeGeneralized(x) is
satisfied, rule MB-OVERRIDE ensures that each inferred use-
site annotation is the same in each position for all of the
overridden/overriding methods.

Rule MB-ASSIGNTOGENERIC-SAME handles the case when
a method argument x is assigned to another variable y that
are both parametric types of the same generic. Promoting
a use-site annotation in the type of x may require pro-
moting the type of y. Consider again argument source of
method addAll on line 7. If the statement “List<E> list2

= source;” was added to the beginning of the method
body of addAll, then changing only the type of source to
List<? extends E> would cause the method to no longer
type check; the type of the left-hand side of the assignment,

list2, would no longer be a supertype of the right-hand
side, source. The influence analysis from Section 4 would
also detect that source’s type influences list2’s type. To
make the upper bounds on uvars less restrictive, we perform
a more precise analysis for generating constraints on uvars.

The expression “y = x.f” does not cause rule MB-
ASSIGNTOGENERIC-SAME to generate a constraint using y’s
type even though the influence analysis detects that x’s type
influence y’s type. Instead, rule MB-FIELDREAD is applied to
reflect that expression “y = x.f” is only a covariant use of
the field type of f. In the actual implementation, rule MB-
ASSIGNTOGENERIC-SAME also applies when x is an expression
that has a destination node (Figure 5) but x is not a qualifier
in the expression. This handles the case when “return x ;”
occurs in method M and other similar cases.

Rule MB-ASSIGNTOGENERIC-BASE handles the other assign-
ment case from x to y when y is declared with a paramet-
ric type of a different generic D<wU> than that used in the
type of x, C<vT>, where C 6= D. This can occur when C<vT>

<: D<wU>. This subtyping relationship may be derived when
there exists another instantiation of the base type, D<v′S′>,
such that (1) C<vT> <: D<v′S′> holds not because of variance
but instead by the class hierarchy and (2) C<vT> <: D<v′S′>
<: D<wU>. Considering the class “class Pair<X,Y> extends

Box<X> {}” for example, Pair<? extends Dog, String>

<: Box<? extends Dog> <: Box<? extends Animal>. Also,
Pair<S,?> <: Box<? extends S> but Pair<?,T> 6<: Box<?
extends S>. More generally, if y is of type Box<vS> and x

is of type Pair<S,T>, generating the most relaxed but safe
constraint for the assignment “y = x” requires computing
the most general instantiation of Pair that is a subtype of
Box<vS>. Rather than compute such an instantiation of C

in rule MB-ASSIGNTOGENERIC-BASE, we chose to simplify the
analysis by restricting the inferred use-site annotation to its
corresponding definition-site variance; this is safe because
definition-site variances support all uses of a generic defini-
tion.

B. Soundness
This section provides a sketch of a rigorous argument for
why our algorithm for generalizing types with wildcards is
sound. There are two important soundness questions rele-
vant to our refactoring tool. First, are the “correct” wildcard
annotations being generated? That is, will the inferred, more
general, types support all of the original operations available
to clients, so that the refactoring will not break any client
code? Second, does the type influence graph record all of
the necessary dependencies between declarations?

The second soundness question can be easily verified
for a given language construct. Examining the type check-
ing rule for an assignment expression, for example, one
can verify that generalizing the type of the right-hand side
may require generalizing the type of the left-hand side but
not the other way around. Effectively, the type influence

uvar constraint generation: (representative rules)

M = enclosingMethod(x)
“x.f” ∈M LookupType(f) = T

¬isWriteTarget(x.f)
uvar(Y; C; x) v var(Y; T)

(MB-FIELDREAD)

M = enclosingMethod(x)
“x.f = e” ∈M

LookupType(f) = T

uvar(Y; C; x) v −⊗ var(Y; T)
(MB-FIELDWRITE)

M = enclosingMethod(x)
“x.<S>m(e)” ∈M

Lookup(m; e) = <YC U> T m(T x) { . . . }

uvar(Y; C; x) v u|U|i=1

(
−⊗ var(Y; U)

)

uvar(Y; T) u|T|i=1

(
−⊗ localvar(Y; Ti; xi)

)

(MB-METHODCALL)

y ∈ hierarchyParams(x)
LookupType(y) = C<vT>

uvar(Y; C; x) v localvar(Y; C<vT>; y)
(MB-OVERRIDE)

M = enclosingMethod(x)
“y = x” ∈M LookupType(y) = C<vT>

Y = ith type parameter of C

uvar(Y; C; x) v inferredUseSite(y; v; C; i)
(MB-ASSIGNTOGENERIC-SAME)

M = enclosingMethod(x)
“y = x” ∈M

LookupType(y) = D<vT> C 6= D

uvar(Y; C; x) v dvar(Y; C)
(MB-ASSIGNTOGENERIC-BASE)

localvar(Y; T; x) =

{
u|T|i=1

(
inferredUseSite(x; v; C; i) ⊗ var(Y; Ti)

)
, if T = C<vT> and hierarchyMaybeGeneralized(x)

var(Y; T), otherwise

inferredUseSite(y; v; C; i) =

{
dvar(Xi; C) t vi t uvar(Xi; C; y) , if y is a method argument
dvar(Xi; C) t vi, otherwise, where Xi is the ith type parameter of C.

hierarchyMaybeGeneralized(x) ≡ ∀y ∈ hierarchyParams(x), y is declared in available source ∧ sameGeneric(y; x).
sameGeneric(x; y) ≡ LookupType(x) = C<vT> ∧ LookupType(y) = C<wU> ∧ |v| = |w|.
LookupType(x) = the declared type of variable x.
isWriteTarget(e) ≡ e is the target (left-hand side) of an assignment.

Figure 11. Constraint Generation from Method Bodies. Shaded parts show where uvar constraints differ from the correspond-
ing dvar constraint of the signature-only analysis.

graph encodes an overapproximation of the dependencies
in our typing rules, feature-by-feature. Therefore, answering
this soundness question formally for the full Java language
would be tedious, error-prone, and would focus on technical-
ities that do not provide fundamental insight on when code
can be generalized with wildcards. Rather, we provide em-
pirical evidence that our influence analysis is sound by re-
compiling the six large libraries of our study after the refac-
toring was performed.

Given that our influence graph records all of the necessary
dependencies, it is safe to rewrite the types of all declarations
in a path in the graph (assuming all declarations in the
path are rewritable). Specifically, rewriting the types of all
declarations in the path preserves the subtype relationships
between the types of expressions from the original program.
This property is a consequence of Lemma 6, which is stated
later in this section.

To answer the first question, we apply many properties
proven in prior work [1, 2], adapted to our refactoring set-
ting. The essence of the proofs is similar to this past work,
but the precise statements are different, due to the unique
elements of our approach. First, we cannot just refer to
definition-site variance, which Java does not support, but in-
stead emulate it via refactoring-induced use-site variance.
Second, we need to also integrate method body analysis,
which we do later, as a separate step.

Our definition-site variance inference algorithm was
proven sound in [1]. This algorithm computes how a new

type system, ignoring Java intricacies, can infer definition-
site variance and, thus, generalize method signatures trans-
parently. Subsequently, the VarJ calculus [2] modeled faith-
fully a subset of Java that supports language features with
complex interactions with variance, such as F-bounded poly-
morphism [6] and wildcard capture. VarJ extends the Java
type system with declared (not inferred) definition-site vari-
ance and shows that this extension is sound. Our current
system borrows from both of the above formalisms by first
inferring definition-site variance [1], and then emulating it
with use-site variance in a more complete setting, borrowed
from VarJ [2].

The type soundness proof of VarJ requires that subtyping
relationships concluded using definition-site variance anno-
tations also satisfy the subsumption principle, where sub-
types can perform the operations available to the supertype.
Another consequence of satisfying that requirement is that
the refactored type is not only a supertype of the original
type but it is also safe to assume that the refactored type is a
subtype of the original type. In other words, types that occur
in the refactored program support all of the operations avail-
able in the original program; otherwise, the refactored code
would not compile because an operation is being performed
in the code that is no longer supported by a refactored type.

The proofs in [1, 2] ensure that the refactored types are
subtypes of the original types according to the subtype rela-
tion with definition-site subtyping. However, Java does not
support definition-site variance, and the subtype relation as

defined in the JLS [11] does not conclude subtype relation-
ships using inferred definition-site variances. To relate our
subtype relation with that of the JLS, we define another sub-
type relation <:JLS that is the same as <: except <:JLS does
not support a definition-site subtyping rule. For example, al-
though Iterator is inferred to be covariant in its type pa-
rameter, Iterator<Dog> 6<:JLS Iterator<Animal>. The fol-
lowing lemma establishes that definition-site variance can be
simulated with use-site variance.

Lemma 1 (Use-site can simulate def-site). If T <: C<vT>,
then T <:JLS C<wT>, where wi = dvar(Xi; C) t vi, for each
i ∈ |w|.

This lemma establishes that any additional subtype re-
lationships that hold for <: but do not hold for <:JLS are
a result of definition-site variance inference. Also, a pro-
gram still compiles if types are generalized only by join-
ing their use-site annotations with inferred definition-site
variances. For example, suppose in a program that type
checks that there is an assignment x = y, where x and
y are declared with types Iterator<Animal> and T, re-
spectively. Since the program type checks, we know T <:
Iterator<Animal>. The refactoring tool may change the
type of y to a greater supertype T′. Since the refactored type
is always a subtype of the original type according to <:, T′

<: T <: Iterator<Animal>. Lemma 1 implies that T′ <:JLS
Iterator<? extends Animal>. So changing the type of x to
the latter type ensures the program still compiles, as far as
assignments to x are concerned. In this example, it could
have been the case that T = Iterator<Animal> and T′ =
Iterator<? extends Animal>.

Although only the types of declarations (e.g., fields) are
rewritten by the tool, we will prove that the types of all ex-
pressions in the refactored program can safely be subtypes
of the corresponding types in the original program. This en-
sures nested expressions are also able to be perform opera-
tions from the original program.

The soundness proof in [1] guarantees that C<(vu t vd)T>

<: C<vuT> is safe, where vd is a safe definition-site variance
for C. Considering Iterator is covariant, for example, this
property implies that Iterator<?> <: Iterator<? super

Animal> is safe to conclude. The refactoring tool would
replace the latter type with the former. We state this property
formally in the following lemma.

Lemma 2 (Def-site joining does not further generalize). Let
C be a generic class such that CT(C) = “class C<X> ...”.
Then C<(w t v)T><: C<vT>, where wi = dvar(Xi; C), for each
i ∈ |w|.

Additionally, in order for the refactored code to compile,
the operations performed on the original types must also be
able to be performed on the refactored types. To describe this
property precisely, first, we assume that there is an auxiliary
(partial) function ftype(f; C<vT>) such that given the name f

of a field that exists in generic class C and an instantiation of
the generic C<vT>, ftype(f; C<vT>) returns the type of the field

for that instantiation. Also, we assume that there is a (partial)
function mtype(m; C<vT>) such that given the name m of a
method that exists in generic class C and an instantiation of
the generic C<vT>, mtype(m; C<vT>) returns the type signature
of the method for that instantiation. Formal definitions of
ftype and mtype can be found in [2].

Since refactored types are subtypes of original types,
showing that operations can be performed on the refactored
types amounts to showing that the subtyping relation sat-
isfies the subsumption principle. This is established by the
following two lemmas that were proven in [2]. The proofs of
these lemmas rely on intricate reasoning involving the vari-
ances of types positions in class definitions, and the subtype
lifting lemma [2, Lemma 1], which establishes the key rela-
tionship between variance and subtyping.
Lemma 3 (Subtyping Specializes Field Type). If T′ <: T
and ftype(f; T) = U , then ftype(f; T′) <: U.

If lemma 3 were not true, the subtyping relation would
violate the subsumption principle; in that case, the supertype
T could return a U from its field f but the subtype T′ could not.

To satisfy the subsumption principle, a method’s type sig-
nature for the subtype must be a subtype of its type signature
for the supertype. Lemma 4 states this precisely.
Lemma 4 (Subtyping Specializes Method Type). If T′ <: T
and mtype(m; T) = <ZC S> (U) → V, then mtype(m; T′) =
<ZC S′> (U′)→ V′ such that (1) U <: U′, (2) S <: S′, and (3)
V′ <: V.

To formally argue that the refactoring preserves compi-
lation, we model the refactoring tool using the FGJ* syntax
and similar notation used in FGJ. Recall that an FGJ pro-
gram is a pair (CT, e) of a class table CT that maps class
names to class definitions and an expression e representing
the main method. The refactoring tool is modeled by a func-
tion R that maps elements from an FGJ program to elements
in the refactored program (R(CT), e). R is not applied to e

because the refactoring tool does not modify term expres-
sions. It only changes the types of declarations, which only
occur in the class table.

The typing judgment CT ` e : T denotes that expression e

has type T given class table CT.9 The following key theorem
is satisfied by the refactoring tool and establishes that the
refactoring preserves compilation.
Theorem 1 (Refactored Types Are Safe). Suppose CT ` e :
C<vT>, where CT(C) = “class C<X> . . .”. Then R(CT) ` e :
C<v′T>, where for each i ∈ |T|,

v′i v

dvar(Xi; C) t vi t uvar(Xi; C; y),
if e = y and y is a method argument

dvar(Xi; C) t vi, otherwise.

This theorem states that the use-site variances in the type
of every expression in the refactored program are bounded

9 The typing judgment in FGJ takes in more parameters such as a type
variable context ∆ and an expression variable context Γ. We skip these
parameters because the exact typing rules are not the focus of this paper.

by the join of the use-site variances in the types in the origi-
nal program and the corresponding definition-site variances,
if the signature-only based variance analysis is performed.
If the method body analysis is also performed, then expres-
sions that are method arguments may be further promoted by
the inferred use-site needed to support only the operations
performed in the method body. The upper bounds of the v′

ensure that every expression can support the operations per-
formed in the original program. Although it is not safe to
assume C<v′T> <: C<vT> in general, it is safe to assume that
subtype relationship for a particular method.

We will sketch the proof of this theorem. To clarify the
presentation, we first prove the theorem for the case where
the refactoring tools performs just the signature-only anal-
ysis. Later, we will cover the case when the method-body
analysis is performed. Also, for simplicity, we ignore the
type influence analysis by assuming that all declarations are
declared in source, and that the types of all declarations are
generalized. Finally, we assume that the type system exhibits
a subsumption typing property: an expression can be typed
with any supertype of its most specific type. Formally, if e : T
and T <:JLS U, then e : U. Assuming this typing rule is safe
because we know that the subtype relation satisfies the sub-
sumption principle. Subsumption typing rules were defined
in both type systems for TameFJ [5] and VarJ. We use re-
lation <:JLS instead of <: because we only want to derive
typing judgments that a standard Java compiler would infer.

Since we are assuming the signature-only analysis, we
can define the refactoring tool function R over all type ex-
pressions in a program: R(C<wT>) = C<vT>, where wi =
dvar(Xi; C) t vi and Xi is the ith type parameter of C. Also,
R(X) = X, where X is a type variable. Given this definition,
we state two important properties:
Lemma 5 (Refactored Type is Subtype of Original).
R(T) <: T.
Lemma 6 (Refactoring Preserves Subtyping). If T <: U,
then R(T) <:JLS R(U).

Lemma 5 states that the refactored type is a subtype of
the original, and it holds because of lemma 2, Lemma 6
establishes that the refactoring preserves subtype relations
from the original program; it is easy to show using lemmas 2
and 1. We restate theorem 1 with the signature-only based
refactoring:
Theorem 2 (Refactored Types Are Safe for Sig-Only). If
CT ` e : T, then R(CT) ` e : R(T). We prove this by
structural induction on expression e.

Case: e = y. Proof: This proof case is trivial. Because
every declaration is generalized, the refactoring tool changes
the type of y from T to R(T).

Case: e = new N(e). Proof: In the original program, e
has type N. It also has type N in the refactored program, if it
type checks. Furthermore, e would have type R(N), by the
subsumption typing rule, since N <:JLS R(N). So we only
need to show that this expression still type checks in the

refactored program. Since new N(e) has a type, by inversion
(similar to [5, Lemma 31]), we know that for each i ∈ |e|,
the actual argument ei also has a type that is a subtype of the
type of the ith formal argument of the constructor for N. We
show that this is also the case in the refactored program.

Let Ti be the type of ei and Ui by the type of the ith

formal argument of the constructor for N. By the inductive
hypothesis, R(CT) ` ei : R(Ti). As discussed above, it
must be the case that Ti <:JLS Ui. By lemma 6, this implies
R(Ti) <:JLS R(Ui). Since i was arbitrary in |e|, new N(e)

type checks in the refactored program. Therefore, R(CT) `
new N(e) : N.

Case: e = e′.f. Proof: Since CT ` e′.f : T, then by
inversion, we have the judgments (1) and (2) below:

1. CT ` e′ : U

2. ftype(f; U) <: T

3. R(CT) ` e′ : R(U), by applying the inductive hypothesis
to (1).

4. R(U) <: U, by lemma 5.

5. ftype(f;R(U)) <: ftype(f; U) <: T, by applying lemma 3
to (4) and (2).

6. ftype(f;R(U)) <:JLS R(T), by applying lemma 1 to (5).

7. R(CT) ` e′.f : R(T), by (3), (6), and the subsumption
typing rule.

Case: e = e′.<S>m(e). Proof: Since CT ` e′.<S>m(e) : T,
then by inversion, we have judgments (1–6) below:

1. CT ` e : U

2. CT ` e′ : U

3. mtype(m; U) = <ZC V> (A)→ B

4. U <: [S/Z]A. 5. S <: [S/Z]V. 6. [S/Z]B <: T.

7. R(CT) ` e′ : R(U), by applying the inductive hypothesis
to (2).

8. R(U) <: U, by lemma 5.

Applying lemma 4 to (3) and (8) gives the following four
judgments:

9. mtype(m;R(U)) = <ZC V′> (A′)→ B′

10. A <: A′. 11. V <: V′. 12. B′ <: B.

We use the following standard substitution preserves sub-
typing lemma that was proven for many extensions of FGJ.

Lemma 7. If T <: T′, then [U/X]T <: [U/X]T′.

Applying lemma 7 to (10–12) gives the next three judg-
ments:

13. [S/Z]A <: [S/Z]A′

14. [S/Z]V <: [S/Z]V′

15. [S/Z]B′ <: [S/Z]B

16. R(CT) ` e : R(U), by applying the inductive hypothesis
to (1).

17. R(U) <: U, by lemma 5.

18. R(U) <: U <: [S/Z]A <: [S/Z]A′, by (17), (4), and (13).

19. S <: [S/Z]V <: [S/Z]V′, by (5) and (14).

20. [S/Z]B′ <: [S/Z]B <: T, by (15) and (6).

21. R(U) <:JLS R([S/Z]A′), by applying lemma 1 to (18).

22. S <:JLS R([S/Z]V′), by applying lemma 1 to (19).

23. R([S/Z]B′) <:JLS R(T), by applying lemma 6 to (20).

24. R(CT) ` e′.<S>m(e) : R(T), by (7), (9), (16), (21–23),
and the subsumption typing rule.

Proof of Theorem 1 with Method Body Analysis. We
next sketch the proof of a theorem analogous to theorem 2
(which specializes theorem 1 specifically for the signature-
only analysis), for the case of the method body analysis. Al-
though the proof of theorem 2 assumed that the signature-
only based analysis was performed, similar reasoning proves
the theorem still holds if the method body analysis is per-
formed. First, for this proof we reason with a function Ry(T)
that refactors the type T with the method body analysis as-
suming that it is the declared type of method argument y:

Ry(T) =

dvar(Xi; C) t vi t uvar(Xi; C; y),
if T = C<vT>, y is a method argument,
and Xi = ith type parameter of C.

R(T), otherwise.

We define another function Rm to model applying the refac-
toring tool to the entire class table. Rm(CT) is the same
as R(CT) except that when Rm is applied to the type T of
method argument y, Rm returns Ry(T) instead of R(T). The-
orem 1 is restated with the equivalent implication below:

Theorem 3 (Refactored Types Are Safe for Body Analysis).
If CT ` e : T, then:
{
Rm(CT) ` e : Ry(T), if e = y and y is a method argument
Rm(CT) ` e : R(T), otherwise.

Note that this theorem implies that if a method argument
y is used as a qualifier in an expression (e.g., “y.f”), that
expression has the same type as in the refactored program
where the signature-only based analysis was performed.
Hence, proving this theorem amounts to showing that each
kind of use of a method argument in the original program
is still supported in the refactored program. Specifically, we
show the following:

• If y is used in a member access expression (i.e., a field
read or a method invocation), then the type of that ex-
pression in the refactored program is the same for both
the signature-only based and the method body analysis.

• If y is declared with type T and is being “directly as-
signed” to a declaration of type U, then Rm(T) <:JLS
Rm(U). Hence, the direct assignment still type checks in
the refactored program. “Directly assigning” y to another
declaration refers to the situation when y is not a qualifier
in an expression but that expression has a destination dec-
laration (node) as discussed in Section 4.3. For example,
this occurs when y was directly returned from a method
(i.e., “return y;” occurred in the method body).

In general for a type T of a method argument y, it is not
the case that Ry(T) <: T. However, for the limited use of y
in the method body, it is safe to assume that Ry(T) <: T.
We define a new subtype relation where T′ <:y T denotes
that for the limited use of type T by method argument y,
T′ is a subtype of T. This assumption is safe because lem-
mas 3 and 4 hold for the subset of members accessed by y

in the method body. In the statements of those two lemmas,
we can replace the subtype T′ with Ry(T) and those lemmas
would still hold for the particular members accessed by y.
Considering method argument source from line 7 of Fig-
ure 1, for example, even though List is invariant, we have
Rsource(List<E>) = List<? extends E> <:source List<E>.
The only member accessed from source in the method body
is iterator(). Lemma 4 holds with the instantiations T′ =
List<? extends E>, T = List<E>, and m = iterator.

Contrasting with lemma 6, in general we cannot establish
the implication T <: U =⇒ Rm(T) <:JLS Rm(U) if T is the
type of a method argument y. However, if T <:JLS U holds
in the original program because y was directly assigned to
another variable of type U, then rules MB-ASSIGNTOGENERIC-
SAME and MB-ASSIGNTOGENERIC-BASE from Figure 11 guaran-
tee Rm(T) <:JLS Rm(U). For example, if Rm(T) = C<vT>

and Rm(U) = C<wT>, rule MB-ASSIGNTOGENERIC-SAME en-
sures v ≤ w. Moreover, if an arbitrarily complex expression
e of type T occurs where an expression of type U is expected,
then the implication T <:JLS U =⇒ Rm(T) <:JLS Rm(U)
holds.

Given the properties above, each kind of use of a method
argument is still supported in the refactored program. Fur-
thermore, the argument above describes how to augment the
proof of theorem 2 to prove theorem 3. For example, in the
proof of theorem 2, for the case when e = new N(e), for each
i ∈ |e|, we have Ti <:JLS Ui, where Ti is the type of the ac-
tual argument ei and Ui is the type of the ith formal argument
of the constructor for N. Since ei was directly assigned to
the ith formal argument, Rm(Ti) <:JLS Rm(Ui). Hence, the
proof of this theorem for the case when e = new N(e) still
holds. Augmenting the remainder of the proof is similarly
straightforward.

	Introduction
	Illustration
	Background
	Variance From A Generic Definition
	Computing Most General Definition-Site Variance
	Variance Transformation
	Rewrites using Definition-Site Inference

	Type Influence Flow Analysis
	Influence Nodes
	Flow Dependencies from Qualifiers
	Expression Targets
	Dependencies from Inheritance
	Algorithm
	Non-rewritable Overrides

	Method Body Analysis
	Type Influence Graph Optimizations
	Evaluation
	Comparison to Related Work
	Conclusions
	Method Body Analysis: Constraints on Use-Site Annotations
	Soundness

