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ABSTRACT
Data exchange between different computer-aided design

(CAD) systems is a major problem inhibiting information in-
tegration in collaborative engineering environments. Existing
CAD data format standards such as STEP and IGES enable geo-
metric data exchange. However, they ignore construction history,
features, constraints, and other parametric-based CAD data. As a
result, they are inadequate for supporting modification, extension
and other important higher-level functionality when accessing an
imported CAD model from another CAD system. Achieving
such higher-level functionality therefore often requires a time-
consuming, error-prone, tedious process of manually recreating
the model in the target CAD system.

Based on techniques adapted from programming language
research, this paper presents an approach to exchanging para-
metric data between CAD systems using formally-defined con-
version semantics. We have demonstrated the utility of our ap-
proach by developing a prototype implementation that automates
the conversion of 2D sketches between two popular CAD sys-
tems: Pro/ENGINEER and SolidWorks. We present examples
showing that our approach is able to accurately convert para-
metric CAD data even in cases where models were constructed
using operations from the source CAD system that have no di-
rect counterpart in the target CAD system. Although the case

study focuses on 2D interoperability, our approach provides for-
mal foundations for supporting 3D and semantic interoperability
between CAD systems.

1 INTRODUCTION
Modern trends toward increasing globalization and product

complexity have increased the need for collaboration and com-
munication of product design. One of the major cost elements
associated with product design is the precious time engineers
spend on data translation between different computer-aided de-
sign (CAD) formats, data integration between different systems,
routine data reprocessing in different application scenarios, re-
design due to loss of information, and error correction due to hu-
man errors in the above processes. Existing standard CAD data
formats such as IGES and STEP focus on geometric data, but
they do not preserve parametric-based CAD data such as con-
struction history, features, and constraints. Hence, design-intent,
semantic-level information, and the ability to perform high-level
modification is lost when exchanging models between CAD sys-
tems. Applying ontologies has become a popular approach to
preserving design intent. Because of the popularity of the onto-
logical approach, Section 6.1 compares our approach to ontolog-
ical approaches in detail.
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This paper presents our approach to parametric CAD data
exchange applying techniques from programming language the-
ory. We model CAD systems as programming languages. CAD
models correspond to programs in the languages modeling the
CAD systems. This paper makes several practical and theoreti-
cal contributions.
Practical Contributions: We implemented software that not
only converts between intermediate representations of CAD
models but also converts between proprietary CAD formats,
namely Pro/ENGINEER (Pro/E) and SolidWorks (SW). We
present algorithms that can convert Pro/E 2D sections containing
elements with no direct counterpart in SW. Moreover, our ap-
proach supports not only 1-1 mappings but also many-to-many
mappings leading to more accurate translations. Our algorithms
are implemented in software automating the conversions.

We provide open XML formats that (1) humans can read
and edit and (2) are linked to the semantics of Pro/E and SW by
our software. One could create a CAD model in the proprietary
Pro/E or SW format without using the graphical user interfaces
of CAD systems by applying our software to an XML representa-
tion of the CAD model. Other CAD interoperability researchers
can apply and automate their logic over our open, easy-to-parse
XML formats to experiment with their approach and not worry
about learning CAD APIs. We present example conversions in
Section 5 from applying our approach to CAD models demon-
strating that our approach can convert CAD models accurately
and preserve design intent.
Theoretical Contributions: We present a rigorous model of
CAD systems that enables formal semantics of parametric CAD
data and precise analyses. We formally define our algorithm for
converting models between CAD systems. Our algorithms are
defined by mathematical specifications, not by code or other in-
formal descriptions. Our formalization is not dependent on tech-
nologies such as the semantic web.

Section 2 provides a brief introduction to programming lan-
guage theory. Section 3 presents our approach to parametric
CAD data exchange. Section 4 discusses the implementation of
our approach. Section 5 presents our empirical results. Section 6
compares our approach to popular related approaches. Section 7
summarizes.

2 INTRODUCTION TO PROGRAMMING LANGUAGE
FOUNDATIONS
Parametric-based representations of CAD models are exten-

sions of constructive solid geometry describing CAD models as
a combination of primitives that are combined using operations.
Each operation is defined by describing its operands and how it
relates with its operands. Most related work fits into this de-
scription. According to [1]: “E-Rep [2, 3] distinguishes between
generated features, datum features, and modifying features; it
regards a CAD model as being built entirely by a sequence of

feature insertion, modification, and deletion operations. The EN-
GEN Data Model (EDM) [4,5] extended STEP’s current explicit
entity representation by adding some predefined local features
such as round and chamfer in a bottom-up approach.”

Consider creating the model shown in Figure 1. A possible
specification of the model is that it is a cylinder with radius 2cm
and height 4cm, a cube with side-length 3cm, and the centers of
the cylinder and cube are separated by exactly 6cm.

FIGURE 1. Simple CAD model example

This model can be created by the following process:

1. Create a 2-dimensional (2D) circle with radius of 2cm.
2. Extrude the circle with depth of 4cm.
3. Create a cube with side-length 3cm.
4. Add the constraint to make centers of the cylinder and cube

be separated by exactly 6cm.

2.1 Syntax
Using the terminology and notation of programming lan-

guage foundations, the model in Figure 1 can be represented by
the following abstract syntax tree (AST):

Constraint(Extrude(Circle(2), 4), Cube(3), 6)

ASTs are also more simply called terms. Let T denote the above
term. ASTs are mathematical expressions that represent a com-
position of operators or nodes. Each AST has the form:

operator(operand1,operand2, . . . ,operandn),

where each operand is also an AST and the operator is a root
node of these ASTs. AST nodes are basically operators that
take a specified number of operands. An operator can take zero
operands; in this case, the parentheses after the operator are typ-
ically not written. For instance, the node 6 in the AST T above
could have been written as 6().

The “tree” in abstract syntax tree comes from the fact that
ASTs can be drawn as a tree diagram; Figure 2 shows the tree
diagram of T . Operators are nodes in the tree. Operands of an
operator are subtrees extending from the operator node in the
tree.
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Constraint

Extrude Cube 6

Circle 4 3

2

FIGURE 2. Tree diagram of Constraint(Extrude(Circle(2), 4),
Cube(3), 6)

ASTs are used extensively in programming languages. The
abstract syntax of a language determines the set of nodes avail-
able in the language. A language’s abstract syntax is defined by
its formal grammar, which specifies grammar/productions rules
specifying how ASTs are constructed. A non-terminal symbol N
denotes a set of ASTs specified by a grammar rule, where N is
on the left-hand side of the : : =. Each grammar rule has the
form “A : : = B1 | B2 | . . . | Bn”. Each Bi is either a non-terminal
symbol or a specific AST. A is the set of ASTs that is the union
of ASTs in B1,B2, . . . ,Bn. Figure 3 shows an example grammar
for a simple language of arithmetic expressions; we call this lan-
guage MiniLang.

Category Item AST Node

Expression e : : = num[n] | x
| +(e1, e2)

| let(x, e1, e2)

FIGURE 3. Grammar of MiniLang language. n denotes a sequence
of digits. x denotes a sequence of letters.

The only non-terminal symbol in MiniLang is e, which de-
notes the set of ASTs that are expressions. Expressions can be
the following:

1. Numbers: num[n], where n is a sequence of digits.
2. Variable names: x.
3. The sum of two subexpressions: +(e1, e2).
4. A let expression where the subexpression e2 is evaluated in

a context that has variable x bound to the value of e1.

Three example ASTs specified by this grammar are below:

1. +(num[3], num[4])

2. +(+(num[6], num[2]), num[1])

3. let(daysPerWeek, num[7], +(num[1],

daysPerWeek))

This model of a language allows one to formally define its se-
mantics and analyze properties. An important category of lan-
guage semantics is dynamic semantics also called operational
semantics. Dynamic semantics inductively define how to eval-
uate ASTs; specifically, it defines a transition system between
ASTs, where the values that ASTs evaluate to are the final states
of the system. Section 3 shows how to apply dynamic semantics
to CAD data exchange. First, we start with a simpler example
defining dynamic semantics over MiniLang.

2.2 Dynamic Semantics
Dynamic semantics are defined by a set of inference rules

that define a transition system for evaluating MiniLang expres-
sions. Inferences rules have the following form:

premises︷ ︸︸ ︷
J1 J2 . . . Jn

J︸︷︷︸
conclusion

Rule Label

Each Ji is a proposition or judgment. If all of the judgments of
the premise (Ji’s) are true, then the conclusion judgment J is true.
Rules with no premises are axioms because the conclusion is true
under any conditions. The dynamic semantics of MiniLang de-
fine a transition system for evaluating MiniLang expressions. In
order to know when we are done evaluating an expression to a
value, we need to define what values are. Values in MiniLang
are single numbers.

num[n] value

The inductive definition of the transition relation for evaluating
expressions is shown in Figure 4. Rules D.1-3 define how to
evaluate additions. Rule D.3 says that the addition of two sin-
gle numbers steps to (transitions to) a number that is the sum of
those two numbers. Rule D.1 says if an evaluation step can be
performed on the left subexpression, then the addition expression
steps to an expression that is the same except with the step per-
formed on the left subexpression. Once we are done evaluating
the left subexpression to a number, rule D.2 allows us to eval-
uate the right subexpression. The notation e2[x/e1] denotes the
expression obtained from e2 by substituting e1 for every occur-
rence of x in e2. Rule D.4 says we evaluate the expression (e1)
that will be bound to the variable of the let expression. Once
e1 becomes a value, then rule D.5 says we can evaluate the body
(e2) of the let expression by replacing the variable with that
value. An example expression evaluation is shown Figure 5.
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e1 7→ e′1
+(e1, e2) 7→ +(e′1, e2)

D.1

e2 7→ e′2
+(num[n1], e2) 7→ +(num[n1], e′2)

D.2

+(num[n1], num[n2]) 7→ num[n1 +n2]
D.3

e1 7→ e′1
let(x, e1, e2) 7→ let(x, e′1, e2)

D.4

e1value

let(x, e1, e2) 7→ e2[x/e1]
D.5

FIGURE 4. Dynamic Semantics of MiniLang

let(x, +(2,1), +(x,5))

7→ let(x, 3, +(x,5)) by rules D.4 and D.3

because +(2,1) 7→ 3

7→ +(x,5)[x/3] by rule D.5
because 3 value

= +(3,5) applying substitution operation
7→ 8 by rule D.3

FIGURE 5. Evaluation of expression: let(x, +(2,1),

+(x,5)). The num[ ] tags on numbers are omitted for brevity.

3 LANGUAGE APPROACH TO CAD DATA EXCHANGE
This section presents our programming language approach

to parametric CAD data exchange. We focus on converting 2D
sections from Pro/E to 2D sections in SW. We do so by convert-
ing between two programming languages, one modeling a sub-
set of Pro/E and the other modeling a subset of SW. Section 3.1
presents ProLang, the language modeling Pro/E. Section 3.2
presents SWLang, the language modeling SW. Section 3.3 com-
pares the two language models. Section 3.4 describes our con-
version from Pro/E to SW via conversion semantics. Section 3.5
discusses how to extend this general approach to convert CAD
elements not mentioned in this paper.

3.1 Pro/ENGINEER Programming Language: ProLang
Figure 6 defines the abstract syntax for a programming lan-

guage modeling a subset of functionality provided by the Pro/E
CAD system for creating two-dimensional sections. A program
in this language corresponds to a 2D section in Pro/E. The sym-

Category Item Production

⇒ SectionP SP : : = Pro2D(EP, CP, DP)

EntityP EP : : = LP | QP

LineP LP : : = LineP(idP, b, PP
1 , PP

2 )

EntityPoint QP : : = EntPoint(idP, PP)

SimplePointP PP : : = PointP(rx, ry, idP)

ConstraintP CP : : = SamePointP(idP, PP
1 , PP

2 )

| HorizontalConstraintP(idP, LP)

| VerticalConstraintP(idP, LP)

| PntOnEntP(idP, LP, PP)

DimensionP DP : : = LineDimP(idP, r, LP)

| LinePointDimP(idP, r, LP, PP)

IdentifierP idP : : = n
Boolean b : : = true | false
Integer n : : = . . .
Real r : : = . . .

FIGURE 6. Syntax of Pro/E 2D Sections

bol⇒ designates that SP is the start symbol of the language. The
start symbol of a language specifies that in order for an AST to
be in the grammar of the language, the AST must be in the set of
ASTs denoted by the start symbol. Hence, the root operator of
any AST specified in the grammar of ProLang must be Pro2D.
This signifies that an AST in ProLang must represent an entire
2D section. For instance, the AST PointP(4.3, 5.2, 1) by
itself is not in the grammar of ProLang; it only represents a sin-
gle point, not an entire 2D section.

Notice that many operators are annotated with a P super-
script. This annotation is used to clarify that it is a ProLang
operator. Later in this paper, there will be mathematical expres-
sions involving symbols from ProLang and from SWLang, the
programming language modeling SW. The annotations will clar-
ify which language the symbols are from.

The notation A denotes a possibly empty list,
[A1,A2, . . . ,An]. A Pro/E 2D section SP is a term Pro2D(EP,

CP, DP) composed of a list of entities EP, a list of constraints
CP, and a list of dimensions DP. An entity EP is a line LP or an
entity point QP. An entity point is a term EntPoint(idP, PP)

composed of an identifier idP and a simple point PP. A simple
point is a term PointP(rx, ry, idP) composed of two real
numbers rx and ry defining the x- and y-coordinates, respectively,
and an identifier idP that does not identify the simple point
but the enclosing entity. All simple points are parameters of
some enclosing entity. A line is a term LineP(idP, b, PP

1 ,

PP
2 ) composed of an identifier idP, a boolean value b signaling

whether or not it is an axis, the first end point of the line PP
1 , and

the second end point of the line PP
2 .
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Four different types of constraints are available. Every con-
straint has an identifier. The SamePointP(idP, PP

1 , PP
2 ) term

specifies that points PP
1 and PP

2 should be at the same location.
The HorizontalConstraintP(idP, LP) term specifies that
the end points of line LP should have the same y-coordinate.
The VerticalConstraintP(idP, LP) term specifies that the
end points of line LP should have the same x-coordinate. The
PntOnEntP(idP, LP, PP) term specifies that point PP is re-
quired to be somewhere on line LP.

The LineDimP(idP, r, LP) term specifies a line dimen-
sion such that the end points of LP should be separated by dis-
tance r. The LinePointDimP(idP, r, LP, PP) term specifies
that the shortest distance between line LP and point PP should be
r. Lastly, an identifier idP is an integer n.

3.2 SolidWorks Programming Language: SWLang
Figure 7 shows a programming language modeling a subset

of functionality provided by the SW CAD system for creating
two-dimensional sections. This subset is similar to the subset of
Pro/E functionality modeled by ProLang. The start symbol is
SS, a non-terminal symbol representing a 2D section in SW. A
SW 2D section SS is a term SW2D(ES, CS, DS) composed of
entities ES, constraints CS, and dimensions DS.

Category Item Production

⇒ SectionS SS : : = SW2D(ES, CS, DS)

EntityS ES : : = LS | PS

LineS LS : : = LineS(ide, PS
1 , PS

2 )

PointS PS : : = PointS(ide, rx, ry, rz)

ConstraintS CS : : = CoincidentS(PS
1 , PS

2 )

| HorizontalConstraintS(LS)

| VerticalConstraintS(LS)

DimensionS DS : : = LineDimS(idd, r, ES
1, ES

2)

| HorLineDimS(idd, r, ES
1, ES

2)

| VerLineDimS(idd, r, ES
1, ES

2)

EntityIdS ide : : = ide(n1, n2)

DimensionIdS idd : : = n
Integer n : : = . . .
Real r : : = . . .

FIGURE 7. Syntax of SW 2D Sections

A SW entity ES is a line LS or a point PS. Each entity has
an entity identifier, ide, that is a pair of integers. A line is a
LineS(ide, PS

1 , PS
2 ) term specifying two end points PS

1 and PS
2 .

A point is a PointS(ide, rx, rz, rz) term consisting of 3 real

numbers rx, ry, and rz specifying the x-, y-, and z-coordinates,
respectively; SW allows sketches to be specified in three dimen-
sional space.

Three constraints are available. The CoincidentS(PS
1 ,

PS
2 ) term specifies that points PP

1 and PP
2 should be at the same lo-

cation. The HorizontalConstraintS(LS) term specifies that
the end points of line LS should have the same y-coordinate;
VerticalConstraintS(LS) specifies that the end points of LS

should have the same x-coordinate.
The LineDimS(idd, r, ES

1, ES
2) term specifies that the

shortest distance between entities ES
1 and ES

2 should be r. The
HorLineDimS and VerLineDimS terms specify that the shortest
horizontal and vertical distance, respectively, between entities ES

1
and ES

2 should be r. Lastly, a dimension identifier idd is an inte-
ger n.

3.3 ProLang and SWLang Comparison
Languages ProLang and SWLang are very similar in struc-

ture; they model roughly similar subsets of the 2D sketch func-
tionality of Pro/E and SW. For example, the only types of entities
for both languages are lines and points. There are many other
similarities but also significant differences that must be handled
to convert models between the two languages. First, points in
Pro/E 2D sections are defined with two coordinates, but points
in SW 2D sections are defined with three coordinates. Pro/E has
two levels of points. As we’ll see in Section 4.1, EntPoint’s en-
able constraints and dimensions to refer to a PointP that is not
part of a more geometrically complex structure (e.g., LineP).
Pro/E lines can be axes, but SW lines cannot and do not take
a boolean parameter. Line dimensions in Pro/E are defined us-
ing lines, but line dimensions in SW are defined with two enti-
ties. SW also allows horizontal and vertical line dimensions that
specify only the horizontal and vertical separation. The most sig-
nificant difference is that the ProLang constraint PntOnEntP has
no direct equivalent in SWLang. Although it might seem that any
ProLang section containing a PntOnEntP constraint could not be
converted into an equivalent section in SW, we present an exam-
ple ProLang section containing PntOnEntP constraints that has
an equivalent SWLang representation. Our conversion approach
is able to convert such Pro/E sections. Section 3.4 describes our
approach to converting from ProLang to SWLang.

3.4 Conversion from Pro/ENGINEER to SolidWorks
In this section, we describe our algorithm for converting

Pro/E 2D sections to SW 2D sections using conversion seman-
tics. First, we need to define notation and operations over lists.

3.4.1 List Operations The notation [A1,A2, . . . ,An]
denotes a list, where the ith element of the list is Ai, and [ ] rep-
resents an empty list. The concatenation operator + is used to
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concatenate two list; formally:

[A1,A2, . . . ,An]+[B1,B2, . . . ,Bm] = [A1,A2, . . . ,An,B1,B2, . . . ,Bm]
(1)

The subtraction operator − is used to remove a sublist of ele-
ments from a list; formally:

[A1,A2, . . . ,An]−[ ] = [A1,A2, . . . ,An] (2)

[ ]−B = [] (3)

[A1,A2, . . . ,An]−[B1,B2, . . . ,Bm]

=

{
[A2, . . . ,An]−[B1, . . . ,Bi−1,Bi+1, . . . ,Bm], if A1 = Bi

[A1]+([A2, . . . ,An]−[B1, . . . ,Bm]), otherwise
(4)

For example, [3,5,4,2]−[1,2,3] = [5,4]. If A is a list, the no-
tation a ∈ A denotes a is an element in A. The notation A ⊆ B
denotes A is a sublist of B; formally:

[ ]⊆ B = true (5)

[A1,A2, . . . ,An]⊆ B =

{
[A2, . . . ,An]⊆ B−[A1], if A1 ∈ B
false, otherwise

(6)
For example, [2,1] ⊆ [1,2,3] but [2,1] 6⊆ [1,3]. Now we define
the +, −, and ⊆ operations for 2D sections.

Pro2D(EP
1 , CP

1 , DP
1)+ Pro2D(EP

2 , CP
2 , DP

2)

= Pro2D(EP
1 + EP

2 , CP
1 + CP

2 , DP
1 + DP

2)
(7)

Pro2D(EP
1 , CP

1 , DP
1)− Pro2D(EP

2 , CP
2 , DP

2)

= Pro2D(EP
1 − EP

2 , CP
1 − CP

2 , DP
1 − DP

2)
(8)

EP
1 ⊆ EP

2 CP
1 ⊆CP

2 DP
1 ⊆ DP

2

Pro2D(EP
1 , CP

1 , DP
1)⊆ Pro2D(EP

2 , CP
2 , DP

2)
SUBSET

The operations +,−, and⊆ are defined on SW 2D sections anal-
ogously.

3.4.2 Conversion Semantics We describe our algo-
rithm for converting from Pro/E 2D sections to SW 2D sections
using conversion semantics (a type of dynamic semantics). Con-
version semantics define a transition system on a set of states.
A state in our transition system is a pair (SP, SS), where SP is a
Pro/E 2D section and SS is a SW 2D section. SP represents the

remaining Pro/E section to convert. SS represents what the con-
version has produced so far. Transition systems have designated
starting states to specify which states they start in. Transition
systems complete when they reach one of their designated final
states. Starting states in our transition system have the form:

(Pro2D(EP, CP, DP), SW2D([], [], [])) (9)

This signals that we start with an arbitrary Pro/E 2D section and
an empty SW 2D section. Final states in our transition system
have the form:

(Pro2D([], [], []), SW2D(ES, CS, DS)) (10)

This signals that we end when there are no more entities, con-
straints, or dimensions in the Pro/E 2D section to convert.

We will define an equivalence relation SP ≡ SS between sim-
ple Pro/E and SW 2D sections. The equivalences between the
simple sections will allow us to convert between more complex
sections. The key transition rule of our conversion semantics is
below.

SP
2 ⊆ SP

1 SP
2 ≡ SS

2

(SP
1 , SS

1) 7→ (SP
1 − SP

2 , SS
1 + SS

2)
TRANS

The TRANS rule says that if we have identified a subsection SP
2

of the Pro/E 2D section SP
1 that we know is equivalent to the

SW 2D section SS
2, then a next step in our conversion can be

removing subsection SP
2 from our remaining work and outputting

the equivalent SW subsection SS
2. The premise SP

2 ⊆ SP
1 is needed

so that we do not introduce “new stuff” to the output SW section
that has no counterpart in the original section from Pro/E.

3.4.3 Pro/E and SW Equivalences This section
presents equivalence relations that can be used to convert Pro/E
2D sections to SW 2D sections. In addition to converting using
one-to-one mappings, our approach allows converting between
multiple combinations of entities, constraints, and dimensions.
First, we present our one-to-one mapping approach.

We define the partial function convE : EP 99K ES, which
maps Pro/E entities to equivalent SW entities. The partial func-
tions convC : CP 99KCS and convD : DP 99K DS are defined sim-
ilarly over constraints and dimensions, respectively. The func-
tion convO converts identifiers and simple points. We assume
an implicit context that is available to the conversion functions,
section∗, which just denotes the enclosing 2D section of the en-
tity, constraint, or dimension of interest. section∗ is used to en-
sure that no two distinct SW elements created by the the con-
version contain the same identifier. section∗ can also be used
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as a function mapping Pro/E identifiers to their corresponding
ProLang terms. Now we define the conversion functions over el-
ements that can be mapped one-to-one.

Converting Entities:

convE(Line
P(idP, false, PP

1 , PP
2 ))

= LineS(convO(idP), convO(PP
1 ), convO(PP

2 ))
(11)

convE(EntPoint(idP, PP)) = convO(PP) (12)

Converting Identifiers and Simple Points:

convO(n) = ide(n, 0) (13)

convO(

PP︷ ︸︸ ︷
PointP(rx, ry, idP))

= PointS(ide(idP, n), rx, ry, 0), where

(14)

n =


0 if section∗(idP) = EntPoint(idP, PP )

1 if section∗(idP) = LineP(idP, b, PP , PP
2 )

2 if section∗(idP) = LineP(idP, b, PP
1 , PP )

The second number n in the pair of numbers of the SW entity
identifier ide(idP, n) is determined by the enclosing entity of
the simple point PP and how PP was being passed as a parameter
of the enclosing entity. If PP is the parameter of an EntPoint,
then n = 0. If PP is the first end point of a line, then n = 1. If PP

is the second end point of a line but not the first, then n = 2.

Converting Constraints:

convC(SamePoint
P(idP, PP

1 , PP
2 ))

= CoincidentS(convO(PP
1 ), convO(PP

2 ))
(15)

convC(HorizontalConstraint
P(idP, LP))

= HorizontalConstraintS(convE(LP))
(16)

convC(VerticalConstraint
P(idP, LP))

= VerticalConstraintS(convE(LP))
(17)

Converting Dimensions:

convD(LineDim
P(idP, r, LineP(idP, b, PP

1 , PP
2 )))

= LineDimS(convO(idP), r, convO(PP
1 ), convO(PP

2 ))
(18)

For converting LinePointDimP(idP, r, LP, PP) terms, if
LP is an x-axis or y-axis, then we map the dimension to a

VerLineDimS or HorLineDimS term as shown below, where
origin denotes a SW point at the origin. Recall that the second
parameter of a Pro/E line term is a boolean value signaling if it
is an axis line.

convD(LinePointDim
P(idP, r, LP, PP))

= VerLineDimS(convO(idP), r, origin, convO(PP)),

if LP is the x-axis

(19)

convD(LinePointDim
P(idP, r, LP, PP))

= HorLineDimS(convO(idP), r, origin, convO(PP)),

if LP is the y-axis

(20)

For converting LinePointDimP dimensions between non-axis
lines and points, we use an auxilary function such that given a
line LP and a point PP, project(LP,PP) = PS, where PS is the
(convO of the) point on line LP that PP projects to.

convD(LinePointDim
P(idP, r, LP, PP))

= LineDimS(convO(idP), r, project(LP,PP), convO(PP))

(21)

Lastly, we define the following equivalence rules to take advan-
tage of the conversion functions.

convE(EP) = ES

Pro2D([EP], [], [])≡ SW2D([ES], [], [])
E.1

convE(CP) =CS

Pro2D([], [CP], [])≡ SW2D([], [CS], [])
E.2

convE(DP) = DS

Pro2D([], [], [DP])≡ SW2D([], [], [DS])
E.3

An Example of a Many-to-Many Conversion: The convC
conversion does not map the PntOnEntP constraint to any
SWLang constraint because there is no equivalent constraint in
SWLang to map the constraint to. However, there are Pro/E 2D
sections containing PntOnEntP constraints that can be mapped
to equivalent SW 2D sections. The following equivalence rule
recognizes one such situation. This situation occurs when two
PntOnEntP constraints are used to constrain the intersection of
two lines to a certain point. This behavior can be simulated in
SW, with the help of an auxiliary function intersect.

intersect(LP
1 ,L

P
2 ) = PP

int

Pro2D([], [PntOnEntP(idP
1 , LP

1, PP ),

PntOnEntP(idP
2 , LP

2, PP )], [])

≡ SW2D([],

[CoincidentS(convO(PP
int), convO( PP ))], [])

INTSECT

7 Copyright c© 2011 by ASME



The intersect function is a partial function that tries to compute
the unique intersection point of two lines. This function is not
defined for two lines that never intersect nor for two lines that
are the same. The Pro/E constraint list [PntOnEntP(idP

1 , LP
1,

PP ), PntOnEntP(idP
2 , LP

2, PP )] specifies that Pro/E point
PP should be somewhere on line LP

1 and somewhere on line LP
2 .

Hence, PP should be at the intersection of lines LP
1 and LP

2 . If
LP

1 and LP
2 intersect at the unique Pro/E point PP

int , then PP
int and

PP should be coincident. So in the SW 2D section, we create the
constraint CoincidentS(convO(PP

int), convO(PP)) constraining
PP and the intersection point PP

int to be coincident.

3.5 Extending The Conversion
The programming language approach described in this pa-

per can be extended to reason about converting CAD elements
not described in this paper. For example, splines are com-
mon entities that occur in CAD systems but are not modeled in
ProLang and SWLang. The approach to modeling Pro/E splines
in ProLang would start by investigating their internal represen-
tation. One then could extend the ProLang syntax with a term
modeling splines corresponding to the internal representation
such as SplineP(idP, PP, rs, re), where PP is a list of points
on the spline curve and rs and re specify the start and end tan-
gent angles of the spline. To preserve the property of being able
to create a Pro/E model using only the ProLang representation,
the internal representation of splines and the associated ProLang
term should be nearly isomorphic to allow two-way conversion
between the formats. Analogously, the SWLang syntax can be
extended with terms to model splines as they occur in SW. The
last step is to extend the conversion semantics with rules defining
how to convert between ProLang and SWLang terms represent-
ing splines. Extending our approach to handle other CAD system
features would proceed similarly. In most cases, this would be
labor-intensive but not a conceptually complex process.

We focused on converting sections from Pro/E to SW. We
could have described the conversion in the other direction, i.e,
converting from SW to Pro/E, but the approach is similar. De-
scribing conversion in this direction would have greatly length-
ened the paper without providing significant conceptual gain.

4 IMPLEMENTATION
To demonstrate that our approach can be fully automated,

we implemented the software package, Pro2DToSW2D. Given an
input Pro/E part file storing a 2D section that can be described in
ProLang, Pro2DToSW2D can automatically create a SW part file
containing an equivalent 2D section. Pro2DToSW2D is imple-
mented in a modular fashion. It is composed of three software
packages that can be executed independently of each other:

1. The ProE-XMLExporter application takes in a Pro/E part
file and exports an XML representation of the part file.

2. The ProE-SW-Middleware application converts an XML
representation of a Pro/E 2D section to an XML representa-
tion of the equivalent SW section.

3. The SW-XMLImporter application takes in an XML repre-
sentation of a SW 2D section and creates a native SW part
file.

The workflow of the conversion process is shown in Figure 8.
Pro2DToSW2D is just the driver coordinating these applications
to execute the workflow for converting the Pro/E native (propri-
etary) format to the SW native format.

 

Pro/Engineer 

Native Format 

Pro/Engineer 

XML Format 

SolidWorks 

XML Format 

SolidWorks 

Native Format 

ProE-XML 
Exporter 

ProE-SW 
MiddleWare 

SW-XML 
Importer 

FIGURE 8. Workflow for converting Pro/E 2D sections to SW2D sec-
tions

XML [6] is a standard text format that is easy
to parse from most popular programming languages.
ProE-XMLExporter is written in C++ to utilize Pro/E’s
C++ API, Pro/TOOLKIT [7], for extracting information from
Pro/E part files. SW-XMLImporter is written in Visual Basic
.NET and uses SW’s .NET API [8] to write SW part files.
The XML intermediate format allows one to choose the best
programming language for interacting with the API for each
CAD system.

Our ProE-SW-Middleware is written in Scala [9]. It reads
in an XML representation of a Pro/E section and creates an in-
ternal ProLang AST representing the section using the grammar
given in Section 3.1. It then converts the ProLang representation
to a SWLang representation (as defined by the grammar in Sec-
tion 3.2) by applying the conversion semantics rules outlined in
Section 3.4. The SWLang representation is then serialized to an
XML representation.

4.1 XML Schemas for Pro/E and SW
Figure 9 shows an XML representation of a segment

of a Pro/E 2D section. The root element <pro2dsection

name="S2D0001"> contains a name attribute specify-
ing the name of the section. Within this element are
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the <pro2dEntities>, <pro2dConstraints>, and
<pro2dDimensions> elements containing lists of XML
elements for entities, constraints, and dimensions, respec-
tively. The XML tree with root element <pro2dConstraint
id="3" type="PRO CONSTRAINT SAME POINT"> represents
a SamePointP constraint. The tree contains XML elements for
entity references. Entity references allow constraints and dimen-
sions to refer to the entities or parameters of entities they apply
to. For example, this SamePointP constraint refers to the first
end point of the line with id=0 using the first entity reference
element, <entityReference id ="0" />, and the first point
type element, <pointType type ="PRO ENT START" />, in
the XML tree of the SamePointP constraint. Point types convey
what part of the entity to select. ProLang does not contain entity
references. Instead when the ProE-XMLExporter creates the
ProLang representation of a constraint or dimension, it just
creates a subtree representing the part of the entity referred to
by the (entity reference, point type) pair. The ProLang AST
corresponding to the same point constraint in the XML of
Figure 9 is shown below.

SamePointP(3, PointP(0, 0, 0), PointP(30, 20, 2))

The XML schema for SW also contains an XML element for
each entity, constraint, and dimension. This schema is similar to
the Pro/E XML schema, so we skip its presentation for brevity.

5 CONVERTED SECTIONS
This section presents two example Pro/E sections that our

software converted. First, we present a Pro/E 2D section con-
verted by our software that requires converting a combination of
multiple Pro/E elements to a combination of multiple SW ele-
ments. This Pro/E section contains a PntOntEntP constraint.
SWLang has no equivalent counterpart to PntOntEntP con-
straints. The example Pro/E section is shown in Figure 10 with
the entities, constraints, and dimensions labeled.

An interesting case of non 1-1 mapping arises when con-
straining the corner of a rectangle to the origin. In Pro/E, the
origin is marked by the intersection of the x and y axes. These
axes are listed as entities and have identifiers 0 and 1. The
PntOntEntP constraint with id="8" constrains the first end
point of the bottom line of the rectangle, the LineP entity with
id="4", to the x axis. Also, this point is constrained to the y
axis by the PntOntEntP constraint with id="9". Since the axes
intersect at the origin, the point must be located at the origin.

ProE-SW-Middleware read in the XML representation of
the Pro/E XML section and created an internal ProLang AST.
Then it converted the ProLang representation to a SWLang repre-
sentation by applying the conversion semantics rules. The result-
ing SW section is shown in Figure 11. Note the CoincidentS

constraint constraining the start point of the bottom line of the

<pro2dsection name="S2D0001">
<pro2dEntities>
<pro2dEntity id="0" isProjection="true"

type="PRO_2D_LINE" >
<end1>
<Pro2dPnt x="0.00" y="0.00" />

</end1>
<end2>
<Pro2dPnt x="0.00" y="-100.00" />

</end2>
</pro2dEntity>
<pro2dEntity id="2" isProjection="false"
type="PRO_2D_POINT">
<pnt><Pro2dPnt x="30.00" y="20.00" /></pnt>
</pro2dEntity>
<pro2dConstraints>
<pro2dConstraint id="3"
type="PRO_CONSTRAINT_SAME_POINT">
<entityReferences>
<entityReference id ="0" />
<entityReference id ="2" />
</entityReferences>
<pointTypes>
<pointType type ="PRO_ENT_START" />
<pointType type ="PRO_ENT_WHOLE" />
</pointTypes>
</pro2dConstraint>
<pro2dDimensions>
<pro2dDimension id="5" type="PRO_TK_DIM_LINE"
value="100.00" >
<entityReferences>
<entityReference id ="0" />

</entityReferences>
<pointTypes>
<pointType type ="PRO_ENT_WHOLE" />
</pointTypes>

</pro2dDimension>
</pro2dDimensions>
</pro2dsection>

FIGURE 9. Example XML Representation of a Pro/E 2D section

rectangle, the PointS entity with id=(0,1), to be coincident
with the point at (0,0). Hence, rule INTSECT was applied to
convert this model.

Figure 12 shows an example Pro/E section only containing
entities, constraints, and dimensions that can be converted in a
1-1 manner to SW 2D elements. We converted this Pro/E section
to the SW section shown in Figure 13. The LinePointDimP

dimension between the Pro/E y axis and the left side of the rect-
angle was converted to a HorLineDimS between the origin and
the point at the bottom-left corner of the rectangle.

6 RELATED WORK
This section compares our programming language approach

to other popular CAD data exchange approaches. IGES [10]
and STEP [11] are neutral, geometric-based formats that are
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FIGURE 10. ProLang 2D section of rectangle constrained on origin

FIGURE 11. Output SW 2D section from converting Pro/E section in Figure 10

commonly used to exchange geometric data between CAD sys-
tems. Although they enable transferring geometric data accu-
rately between CAD systems, they do not preserve parametric-
based CAD data such as construction history, features, and con-
straints. Hence, these formats are inadequate for modifying, ex-
tending, and performing other important higher-level functional-
ity on CAD models in a target CAD system, where the models
were created in a different source CAD system. For example,

Figure 14 shows a Pro/E model and its feature tree when open-
ing its native part file in Pro/E. Figure 15 shows the same Pro/E
model and its feature tree when opening an IGES representation
of the model from SW. The features from the native part file have
been lost. Our approach enables all design-intent, not just geo-
metric information, to be exchanged between CAD systems.

Proficiency [12] is a commercial CAD interoperability ap-
plication that converts between Pro/E, CATIA V4 and V5, NX,
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FIGURE 12. ProLang 2D section with lines not perpendicular or par-
allel to each other

FIGURE 13. Output SW 2D section from converting Pro/E section in
Figure 12

and I-deas. Native CAD formats are converted to Proficiency’s
closed, binary, and proprietary Universal Product Representa-
tion [13] (UPR). Proficiency is able to automatically transfer
feature-based information between CAD systems when the fea-
tures map in a 1-1 or 1-many manner. Features which do not
map 1-1 or 1-many are converted using Proficiency’s Completion
Wizard, which prompts the user to decide how features should
be converted. Either the user converts the feature to a solid ge-

 

FIGURE 14. Feature tree for a native Pro/E part file

 

FIGURE 15. Feature tree for the same part in Figure 14, except that
it has been saved in IGES format

ometric object, or the user manually tries to recreate the feature
in the target CAD system. Because their UPR representation is
a closed, binary format, the semantics of their information and
the parametric data that can be represented in UPR is not readily
apparent to a user. In addition, Proficiency does not support auto-
mated conversion between many-to-many or many-to-one map-
pings.

6.1 Comparison To Ontological Approaches
Ontologies [14] have arguably become the dominant ap-

proach to parametric CAD data exchange [15, 16, 17, 18, 19].
The following is an overview of the ontological-based approach.
Each CAD system is represented as an ontology containing
classes/concepts, properties, and constraints. CAD models are
represented by a graph [20], where the instances of the classes
in the ontology are the nodes of the graph and the property rela-
tions between these instances are the edges of the graph. For ex-
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ample, [15] presents PRO-AO, the Pro/E Application Ontology,
and CAT-AO, the CATIA Application Ontology, both described
in the OWL Web Ontology Language [21]. In [16] the authors
describe how they compute similarity measures between classes
from their ontologies. Although the authors describe how they
map instances with similarity metrics between classes, they do
not explain how they convert instance data from a source ontol-
ogy to instance data in a target ontology. Since CAD models are
represented using instance data, they never define how to convert
CAD models from one system to another.

Even given equivalences between OWL classes, important
unanswered questions remain for using OWL to convert CAD
models. One approach to using equivalence relations between
OWL classes is based on the fact if I is an instance of class C and
class C′ is equivalent to C, then OWL will automatically infer
that I is also an instance of C′. Class C can be defined in a source
ontology, and C′ can be defined in a target ontology. However,
inferring that I is an instance of class C′ in the target ontology
does not specify how to convert between the parameters required
for the classes.

Consider the following scenario. CAD system A defines
a feature type Plane3Points that takes in three points as pa-
rameters to define a plane. CAD system B defines a feature
type PlaneNormal that takes in one point and a normal vec-
tor as parameters to define a plane. An ontology for A contains
a class named Plane3Points, with property restrictions speci-
fying that instances of this class require three distinct points. An
ontology for B contains a class named PlaneNormal, with prop-
erty restrictions specifying that instances of this class require one
point and a normal vector. Let P1, P2, and P3 be three distinct
points, which define a plane. Let P and N be the point and nor-
mal vector that define the same plane as P1, P2, and P3. Let I
be an instance of class Plane3Points that represents the plane
containing points P1, P2, and P3. Since I is an instance of class
Plane3Points, there must exist instances that represent points
P1, P2, and P3, and these instances are property values of I. How-
ever, there is no requirement that instances for point P and vec-
tor N exists. If classes Plane3Points and PlaneNormal were
specified to be equivalent, how would the instances for P and
N be generated? One may consider defining SWRL [22] rules
to compute P and N, but SWRL rules can only infer new prop-
erty relationships between existing OWL individuals, classes, or
other resources. 1 In addition, to the best of our knowledge,
no one has shown how to compute the complex mathematics re-
quired in the logic to convert between CAD formats within OWL,
SWRL, or the semantic web. Hence, automatically generating
instances for P and N would have to be performed by a separate
application that carries out the mathematical computation to de-

1The Protégé SWRLX [23] extension to SWRL does allow creating new OWL
resources in inference rules, but this extension is not a W3C standard and a
Protégé specific plugin.

termine P and N and generate the corresponding instance data in
the OWL format. Our approach allows such conversions to be
computed over programming languages representing CAD sys-
tems.

We are not aware of any implementations of ontology-based
approaches capable of actually converting between proprietary
CAD formats, nor even converting from an ontological represen-
tation to a proprietary CAD format. An advantage of our ap-
proach is that our languages are linked with the semantics of the
CAD system by software. One can create a Pro/E model in the
native Pro/E without using the Pro/E GUI by writing a program
in ProLang in the XML format specified in Section 4.1. Simi-
larly, one create a SW model by only writing XML. However,
to our knowledge, no existing ontological format allows one to
a create a CAD model in a native CAD system format by only
specifying the model in the ontological format.

An intermediate format that is not paired with software that
translates the intermediate format to a format that a CAD system
can understand cannot be readily compared to the semantics of
the CAD system it is attempting to model. As a result, it is not
clear how close the ontological representations of CAD models
are to the proprietary format used by real CAD systems. Con-
sider the feature formats from [1] and [17]. Both formats are
used to create feature representations of SW models. One differ-
ence between the two formats is the format from [17] has a con-
cept of a Form but the format from [1] does not. The differences
between the two formats implies there is a semantic difference
between at least one of these formats and the proprietary format
used by SW. Lacking a way to connect them to real CAD sys-
tems makes it difficult to determine what makes the ontological
format for representing SW models from [17] better than the for-
mat from [1] or even the pizza ontology [24]. A concrete link
is needed to explain the correspondence between an intermedi-
ate representation and the format used by a CAD system for its
models such as software that translates between the intermedi-
ate format and the native CAD format. Our prototype system
includes such a link.

Lastly, our formalism allows more compact representations
of CAD systems and models than OWL, and the logic of the
conversion process is more apparent. For example, relationships
between n ≥ 3 elements or n-ary relations are compactly repre-
sented with terms such as LineDimS(idd, r, ES

1, ES
2). How-

ever, an OWL property relation can only be between two nodes,
and representing n-ary relations in OWL is much more cumber-
some requiring one to understand more details about the seman-
tic web. Because of the complexity of representing n-ary rela-
tions in OWL, W3C has created a lengthy and detailed document
explaining how to do so [25].
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7 SUMMARY
We have presented a novel approach to parametric CAD data

exchange based on formal foundations using techniques from
programming language research. We have demonstrated that our
approach can be automated to convert models between popu-
lar CAD systems. Our software can enable other CAD inter-
operability researchers to automate their approaches using our
open, easy-to-parse XML formats without learning CAD APIs.
We have created programming languages modeling (subsets of)
Pro/ENGINEER and SolidWorks, ProLang and SWLang. We
have rigorously described our algorithm for converting paramet-
ric CAD data between the modeled subsets of Pro/ENGINEER
and SolidWorks by defining conversion semantics that converted
ProLang trees to SWLang trees. Our approach can convert any
section that can be represented in ProLang that is the union
of subsections that have equivalent SolidWorks sections. Al-
though the proof-of-concept case study presented in this paper
only models a subset of 2D sections, our approach is not limited
to 2D data. Features and other 3D data from a source CAD sys-
tem can equally well be represented by terms from a language
and be converted for use in a target CAD system by defining
conversion semantics to reason about its translation.
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