
SUBTYPING WITH GENERICS: A UNIFIED
APPROACH

A Dissertation Presented

by

JOHN G. ALTIDOR

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2014

School of Computer Science

c© Copyright by John G. Altidor 2014

All Rights Reserved

SUBTYPING WITH GENERICS: A UNIFIED
APPROACH

A Dissertation Presented

by

JOHN G. ALTIDOR

Approved as to style and content by:

Yannis Smaragdakis, Chair

Jack C. Wileden, Member

Neil Immerman, Member

Ian Grosse, Member

Lori Clarke, Department Chair
School of Computer Science

ACKNOWLEDGMENTS

First, I thank Yannis Smaragdakis and Jack Wileden who have taught me a great

deal about programming languages. In addition, they have stressed the importance

of communicating ideas clearly, motivating work, and justifying claims. I am deeply

indebted to them. I thank my advisor, Yannis, also for pushing me to strive for

excellence, providing vast amounts of feedback, and for teaching me how to recognize

when work can be improved. I thank Jack also for being my initial advisor and for

advising me for nearly 10 years since my undergraduate years. Jack has been an

amazing mentor and has broaden my horizons. His guidance has contributed greatly

to my accomplishments and has shaped who I am today.

I also thank both Jack and his wife, Andrea, for their generosity. I thank Ian

Grosse for years of collaborating on interdisciplinary research and teaching me how to

work with people from other fields. I also thank him for accepting to wade through the

sea of greek symbols in this dissertation. I thank Neil Immerman for showing me that

theory is not only an academic exercise but also a valuable tool for making practical

impact. I thank Shan Shan Huang for her initial work on variance that eventually

led to this dissertation. I thank Christoph Reichenbach for his willingness to listen

to research ideas no matter how premature they were. I thank my REU students,

Jeffrey McPherson, Keith Gardner, and Felicia Cordeiro for directly helping with my

research projects.

I thank Tongping Liu, Kaituo Li, Dan Barowy, Charlie Curtsinger, Matthew

Laquidara, Jacob Evans, Hannah Blau, and other students of the department for

listening to many of my presentations and for providing a social environment. I

thank Barbara Sutherland for her endearing words of encouragement especially when

iv

work seemed insurmountable. I thank the excellent staff in the School of Computer

Science for answering so many of my questions and helping me with so much. I thank

Hridesh Rajan for introducing me to valuable skills for critically evaluating literature

and for writing scientifically. I thank Aaron Stump, Cesare Tinelli, Harley Eades III,

and others from the CLC group for teaching me a great deal about formal verification

tools. I thank Beth Duggan for helping me develop inter-personal professional skills

and teaching me a great deal about the corporate world. I thank Gabriele Belete,

Jaikishan Jalan, Faris Khundakjie, and others for frequently encouraging me to pur-

sue a Ph.D. I thank Jeremy Smith, Douglas Devanney, and Gregory Cutter who have

supported me throughout the years. I thank Khurram Mahmud for spurring my ini-

tial interest in computer science and making it seem cool to study it. I thank Jon

Leachman and Serena Dameron for their friendship and generous hospitality. I thank

my parents who have stressed the importance of education since my birth. They came

from humble beginnings in Haiti and taught me the value of hard work. I also thank

my brother and sister for their support. I thank my future wife and partner in life,

Alina Florescu, for her love, support, and continuous encouragement.

v

ABSTRACT

SUBTYPING WITH GENERICS: A UNIFIED
APPROACH

SEPTEMBER 2014

JOHN G. ALTIDOR

B.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Yannis Smaragdakis

Reusable software increases programmers’ productivity and reduces repetitive

code and software bugs. Variance is a key programming language mechanism for

writing reusable software. Variance is concerned with the interplay of paramet-

ric polymorphism (i.e., templates, generics) and subtype (inclusion) polymorphism.

Parametric polymorphism enables programmers to write abstract types and is known

to enhance the readability, maintainability, and reliability of programs. Subtyping

promotes software reuse by allowing code to be applied to a larger set of terms. In-

tegrating parametric and subtype polymorphism while maintaining type safety is a

difficult problem. Existing variance mechanisms enable greater subtyping between

parametric types, but they suffer from severe deficiencies: They are unable to ex-

press several common type abstractions. They can cause a proliferation of types and

redundant code. They are difficult for programmers to use due to their inherent

complexity.

vi

This dissertation aims to improve variance mechanisms in programming languages

supporting parametric polymorphism. To address the shortcomings of current mech-

anisms, we will combine two popular approaches, definition-site variance and use-site

variance, in a single programming language. We have developed formal languages

or calculi for reasoning about variance. The calculi are example languages support-

ing both notions of definition-site and use-site variance. They enable stating precise

properties that can be proved rigorously. The VarLang calculus demonstrates fun-

damental issues in variance from a language-neutral perspective. The VarJ calculus

illustrates realistic complications by modeling a mainstream programming language,

Java. VarJ not only supports both notions of use-site and definition-site variance but

also language features with complex interactions with variance such as F-bounded

polymorphism and wildcard capture.

A mapping from Java to VarLang is implemented in software that infers definition-

site variance for Java. Large, standard Java libraries (e.g., Oracle’s JDK 1.6) were

analyzed using the software to compute metrics measuring the benefits of adding

definition-site variance to Java, which only supports use-site variance. Applying this

technique to six Java generic libraries shows that 21-47% (depending on the library)

of generic definitions are inferred to have single-variance; 7-29% of method signatures

can be relaxed through this inference, and up to 100% of existing wildcard annotations

are unnecessary and can be elided.

Although the VarJ calculus proposes how to extend Java with definition-site vari-

ance, no mainstream language currently supports both definition-site and use-site

variance. To assist programmers with utilizing both notions with existing technology,

we developed a refactoring tool that refactors Java code by inferring definition-site

variance and adding wildcard annotations. This tool is practical and immediately

applicable: It assumes no changes to the Java type system, while taking into ac-

count all its intricacies. This system allows users to select declarations (variables,

vii

method parameters, return types, etc.) to generalize. It performs a flow analysis to

determine the set of declarations that require updating given a user’s selection. We

evaluated our technique on six Java generic libraries. We found that 34% of available

declarations of variant type signatures can be generalized—i.e., relaxed with more

general wildcard types. On average, 146 other declarations need to be updated when

a declaration is generalized, showing that this refactoring would be too tedious and

error-prone to perform manually. The result of applying this refactoring is a more

general interface that supports greater software reuse.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF FIGURES .xiii

CHAPTER

1. INTRODUCTION . 1

1.1 Subtype Polymorphism . 1
1.2 Parametric Polymorphism . 3
1.3 Variance Introduction . 5
1.4 Illustration of Approach . 8
1.5 Dissertation Outline . 10

2. BACKGROUND ON VARIANCE . 12

2.1 Definition-site Variance . 12
2.2 Use-site Variance . 15
2.3 A Comparison . 16
2.4 Generalizing the Design Space . 17

3. REASONING ABOUT VARIANCE . 20

3.1 Variance Composition . 20
3.2 Integration of Use-Site Variance . 24

3.2.1 A Note on Scala: . 26

3.3 Recursive Variances . 27

3.3.1 Recursive Variance Type 1 . 27
3.3.2 Recursive Variance Type 2 . 28
3.3.3 Recursive Variance Type 3 . 29

ix

3.3.4 Recursive Variance Type 4 . 30
3.3.5 Handling Recursive Variance . 31
3.3.6 A Note on Scala: . 31

4. VARLANG: A CORE LANGUAGE AND CALCULUS 33

4.1 Syntax . 33
4.2 VarLang Translation . 34

4.2.1 Example . 35

4.3 Revisiting Recursive Type Variances . 36
4.4 Constraint Solving . 37

5. TOWARDS INDUSTRIAL STRENGTH LANGUAGES 40

5.1 Realistic Complications . 42
5.2 Generic Methods . 43

5.2.1 Contrasting Use-Site Variance and Generic Methods 45

5.3 Existential Types . 47

5.3.1 Expressible But Not Denotable Types . 49
5.3.2 Scope of Wildcards . 49
5.3.3 Wildcard Capture . 52

5.4 F-bounded polymorphism . 53

6. VARJ . 56

6.1 VarJ Syntax . 56
6.2 Variance of a Type . 57
6.3 Variance of a Position . 62
6.4 Subtyping . 68
6.5 Typing and Wildcard Capture . 70

6.5.1 Expression Typing . 70
6.5.2 Matching for Wildcard Capture . 72
6.5.3 Sifting for Wildcard Capture . 74

6.6 Type Soundness . 78
6.7 Discussion . 79

6.7.1 Boundary Analysis . 79

6.7.1.1 F-Bounds in Existential Types . 80

x

6.7.2 Definition-Site Variance and Erasure . 82

7. VARIANCE SOUNDNESS . 85

7.1 Proving Subsumption in VarJ . 87
7.2 High-Level Proof of Lemma 2 . 89
7.3 Supporting Field Writes . 93

8. AN APPLICATION: DEFINITION-SITE VARIANCE
INFERENCE FOR JAVA . 95

8.1 Applications . 95
8.2 Analysis of Impact . 97

8.2.1 Backward Compatibility and Discussion . 103

9. REFACTORING BY INFERRING WILDCARDS 105

9.1 Contributions Relative to Past Work . 105
9.2 Illustration . 108
9.3 Type Influence Flow Analysis . 113

9.3.1 Influence Nodes . 114
9.3.2 Flow Dependencies from Qualifiers . 117
9.3.3 Expression Targets . 118
9.3.4 Dependencies from Inheritance . 119
9.3.5 Algorithm . 119
9.3.6 Non-rewritable Overrides . 121

9.4 Method Body Analysis . 124
9.5 Type Influence Graph Optimizations . 127
9.6 Evaluation . 129
9.7 Comparison to Related Work . 136

10.RELATED WORK . 138

10.1 Related Research on Variance . 138

10.1.1 Operations Available to a Variant Type . 141

10.2 Variance and Programming Language Research . 144

10.2.1 Nominal Subtyping and Structural Subtyping 144
10.2.2 Nominal Subtyping and Software Extension 146

10.2.2.1 Functional Languages . 146

xi

10.2.2.2 New Data Types vs. New Operations, In
Practice . 148

10.2.3 Generalized Constraints with Existential Types 148

10.2.3.1 Deconstructing Generalized Constraints 149
10.2.3.2 Deconstructing Existential Subtyping 151
10.2.3.3 Boundary Analysis and Deconstructing

Constraints . 152

10.2.4 Proofs of Language Properties . 155

10.2.4.1 Mechanized Proofs . 156

10.2.5 Barendregt’s Variable Convention . 157

11.CONCLUSION . 160

11.1 Summary of Contributions . 160
11.2 Future Work . 162

APPENDICES

A. VARLANG SOUNDNESS . 165
B. PROOF OF VARJ SOUNDNESS . 179
C. METHOD BODY ANALYSIS: CONSTRAINTS ON USE-SITE

ANNOTATIONS . 212
D. SOUNDNESS OF REFACTORING . 217

BIBLIOGRAPHY . 229

xii

LIST OF FIGURES

Figure Page

2.1 Standard variance lattice. 13

3.1 Variance transform operator. 21

4.1 Syntax of VarLang . 33

5.1 Example Java program that motivates the usage of existential types
to model Java wildcards. This program is based on an example
from [12, Section 2.1]. 48

6.1 VarJ Syntax . 58

6.2 Variance of types and ranges . 60

6.3 Class and Method Typing . 64

6.4 Lookup Functions . 64

6.5 Wellformedness Judgments . 65

6.6 Subtyping Relations . 66

6.7 Expression Typing and Auxiliary Functions For Wildcard Capture 71

6.8 Reduction Rules . 75

7.1 Key lemmas for proving variance analysis only infers type safe
subtyping. Arrows denote implication. We skip some parameters
in the subtyping judgments in this figure such as the type variable
context ∆ because the exact rules are not the focus of this
chapter. 88

xiii

8.1 Definition-Site Variance Inference Statistics by Type Definitions. An
invariant class is invariant in all of its type parameters, whereas a
variant class is variant in at least one of its type parameters.
Shaded results are for the method body analysis, unshaded for the
signature-only analysis. 99

8.2 Unnecessary Wildcards and Over-Specified Methods. Shaded results
are for the method body analysis, unshaded for the signature-only
analysis. 100

8.3 Definition-Site Variance Inference Statistics by Type Parameters.
Shaded results are for the method body analysis, unshaded for the
signature-only analysis. 101

9.1 Code comparison. Original code on the top. Refactored code on the
bottom. Declarations that were selected for generalization are
shaded in the original version. 109

9.2 FGJ* Syntax . 115

9.3 Auxiliary Functions . 116

9.4 Simplified code example from the Apache collections library at the
top. Subtyping (interface-implements) relationships at the
bottom, if we annotate K with “ ? extends” only in the parent
type OrderedIterator<Map.Entry<K,V>>. 122

9.5 Variance rewrite statistics for all declarations with generic types.
Rewritable decls are those that do not affect unmodifiable code,
per our flow analysis. Rewritten decls are those for which we can
infer a more general type than the one already in the code.
Shaded results are for the method body analysis, unshaded for the
signature-only analysis. 130

9.6 The flows-to set of a declaration D is the set of all declarations that
are reachable from/influenced by D in the influence graph.
Flowsto Avg. Size is the average size of the flows-to set for all
declarations in the influence graph. Flowsto-R Avg. Size is the
average size of the flows-to set for all rewritable declarations in
the influence graph. 131

xiv

9.7 Variance rewrite statistics for declarations with variant types (i.e.,
using generics that are definition-site variant). Rewritable decls
are those that do not affect unmodifiable code, per our flow
analysis. Rewritten decls are those for which we can infer a more
general type than the one already in the code. Shaded results are
for the method body analysis, unshaded for the signature-only
analysis. There are slightly more variant decls in the method
body analysis because more generics are variant. 132

9.8 Refactoring resulting from applying Kiezun et al.’s [41] and then our
refactoring tool . 135

10.1 Code example for investigating which non-static methods are
available to an instance of SimpleGen<? super T>, where T is some
type expression. In this example, available methods are methods
that can be called with a non-null value. If calling a method with
any non-null value causes a compiler (a type checking) error,
then that method is considered not to be available. 143

10.2 Example C# program with generalized constraints. This example is
based on an example from [24, Section 2.5]. 150

C.1 Constraint Generation from Method Bodies. Shaded parts show
where uvar constraints differ from the corresponding dvar
constraint of the signature-only analysis. 214

xv

CHAPTER 1

INTRODUCTION

Writing reusable software is vital to programmer productivity and software safety.

Productivity increases when programmers are able to apply a reusable and well-tested

solution. Repeating most of an existing implementation may introduce new bugs in

the reimplementation. Duplicate code is also difficult to maintain because updates

must be repeated. A software fix, for example, must be applied to every repetition of

the buggy code. The ability to reuse code, thus, is key to software development.

Abstraction is the fundamental mechanism for writing reusable code. Code can

be generalized by abstracting components of the software that can vary. This sup-

ports the idea of software modularity, where software components can be swapped

with others without modifying existing code. Extending software with new features

without changing existing code is another important goal of reusable design.

1.1 Subtype Polymorphism

Programming languages provide tools for introducing abstractions and writing

reusable software. Polymorphism is a broad category of abstraction mechanisms.

It refers to the ability to apply one piece of code to multiple types. Subtype poly-

morphism, also known as inclusion polymorphism, is a kind of polymorphism where

multiple classes can extend or implement another class or interface. In Java, for

example, a class Dog may extend another class Animal as in the following code:

class Animal { void speak() { ... } }

class Dog extends Animal { void fetchFrisbee() { ... } }

class Client {

1

void foo(Animal a) { a.speak(); }

void bar(Dog d) { d.fetchFrisbee(); }

}

The extending class, Dog, is called a subclass of Animal. The extended class,

Animal, is called a superclass or a parent of the extending class, Dog. Java supports

inheritance: subclasses inherit all members (e.g., methods and fields) from their

parent class. In this example, because Dog extends Animal, Dog inherits method speak

from its parent Animal. As a result, method speak can be invoked on any instance

of Dog as well as any instance of Animal. Furthermore, a subclass and its superclass

are said to be in an is-a relationship. Because class Dog extends class Animal, a Dog

is an Animal. That is, every instance of Dog is also considered to be an instance of

Animal because Dogs inherit the ability to perform all of the operations of Animals.

Therefore, method foo in class Client can take in instances of Dog because they are

also instances of Animal.

Although a Dog is an Animal, the inverse is not true: An Animal is not a Dog

because a Dog can do something that an Animal cannot. Not every instance of Animal

supports a fetchFrisbee method but every instance of Dog does. As a result, method

bar in class Client accepts every instance of Dog, but it does not accept every instance

of Animal.

Java interfaces [28, Chapter 9] provide another example of subtype polymorphism.

They enable developers to program to an interface rather than an implementation.

A class may provide an implementation of an interface. Any implementation of an

interface can be used where an instance of the interface is expected without modifying

clients of the interface.

Classes, interfaces, and similar kinds of software modules are modeled in program-

ming language research as types. Subtyping establishes when one type can be used

where another is expected. Subtyping is defined using a binary relation <: between

types. T <: U is read as “T is a subtype of U”; this signals that an instance of T may

2

be provided where a U is expected. Furthermore, every instance of T is also said to

be an instance of U.

U is also called a supertype of T, when T <: U. This vocabulary comes from viewing

a type as the set of all of its instances. Under this interpretation, U is a superset of T.

The subtyping relation should be defined to satisfy the subsumption principle:

Whenever T <: U is established, any operation that an instance of supertype U can

perform should also be able to be performed with an instance of subtype T. For ex-

ample, a standard Java compiler concludes C <: I, if class C implements interface I.

This subtype relationship is safe because class C implements all of the methods/op-

erations declared in interface I. Since class C may implement additional methods not

in interface I, it is not safe to assume the reverse, I <: C. In this case, an instance of

I may not contain a method that is supported in class C; moreover, assuming I <: C

would violate the subsumption principle.

1.2 Parametric Polymorphism

Parametric polymorphism is one of the most significant programming language

advances of the past 40 years. It is another mechanism for writing reusable software.

This language feature occurs in many programming languages and appears in Java

as generics. A generic class can declare type variables that abstract type expressions

that occur in the implementation of the class. First, consider the non-generic class

ListOfAnimal below:

class ListOfAnimal {

Animal get(int index) { ... }

void add(Animal elem) { ... }

int size() { ... }

}

This class represents a list of any type of Animals. It supports reading Animals

from the list using method get and adding Animals to the list using add. Method

size returns the number of Animals in the list.

3

Because instances of this class can contain any type of Animal, type errors can

result when a more specific type of list is desired. If a list should only contain Dogs, for

example, but a client mistakenly added an instance of class Cat to the list, a runtime

error may result.1 One way of avoiding this kind of error is making another class that

only allows creating lists of Dogs such as the class below.

class ListOfDogs {

Dog get(int index) { ... }

void add(Dog elem) { ... }

int size() { ... }

}

If one also wanted to create a list that only contained Cats, a similar class to

ListOfDogs would be needed, where occurrences of the type Dog are replaced with

Cat. Creating a new class each time a list of a new type is desired is a clear case of

duplicated code that is error prone and difficult to maintain. Generics were invented

to support this type variability without requiring code to be duplicated. The Java

generic class below removes the need for the classes ListOfAnimal and ListOfDog.

class List<X> {

X get(int index) { ... }

void add(X elem) { ... }

int size() { ... }

}

In this generic List class, a type parameter/variable X has been declared. It

abstracts the type of elements in instances of List. Lists of specific types of elements

can be emulated by instantiating the parameter with the desired type. For example,

type List<Animal> simulates class ListOfAnimal. Type List<Animal> can be thought

of as a new version of class List with occurrences of type variable X replaced by the

type argument, Animal.

1A runtime error would certainly have to result if a method only in class Dog (e.g.,
fetchFrisbee) is invoked on the Cat added to the list.

4

Similarly, type List<Dog> emulates class ListOfDogs. Instances of List<Dog> can

only contain Dogs. A Cat cannot be added to a List<Dog>. This prevents the runtime

error that can occur when we use ListOfAnimal to create a list that should only

contain Dogs.

1.3 Variance Introduction

Generics and subtyping are two key programming language mechanisms for writ-

ing reusable software. Although they work well in isolation, utilizing both features

simultaneously suffers from severe practical limitations. In this dissertation, we are

concerned with variance, the ability to write one piece of code that applies to multiple

instantiations of a generic. For example, a Java class Dog may extend a class Animal.

In this case, Dog is considered to be a subtype of Animal. However, Java does not

conclude List<Dog> is a subtype of List<Animal>. Assuming this subtype relation-

ship can result in a runtime error. In this case, the supertype, List<Animal>, can add

a Cat to itself but the subtype, List<Dog>, cannot, which violates the subsumption

principle.

This dissertation investigates mechanisms for improving variance in programming

languages. Variance mechanisms are the keystone of safe genericity in modern pro-

gramming languages, as they attempt to develop the exact rules governing the in-

terplay of the two major forms of polymorphism: parametric polymorphism (i.e.,

generics or templates) and subtype (inclusion) polymorphism. Concretely, variance

mechanisms aim to answer the question “under what conditions for type expressions

Exp1 and Exp2 is C<Exp1> a subtype of C<Exp2>?”

The conventional answer to this question has been definition-site variance: the

definition of generic class C<X> determines its variance [4, 18, 24]. Depending on how

type parameter X is used in the class, C can have one of four flavors of variance: it

can be covariant, meaning that C<S> is a subtype of C<T> if S is a subtype of T; it

5

can be contravariant, meaning that C<S> is a subtype of C<T> if T is a subtype of S;

it can be bivariant, meaning that C<S> is always a subtype of C<T>, for any two types

S and T; or it can be invariant, meaning that C<S> is a subtype of C<T> only if types

S and T are “equivalent” or subtypes of each other.

Languages like C# [31] and Scala [51] support a type system with definition-

site variance: at the point of defining the generic type C<X> we state its subtyping

policy, and the type system attempts to prove that our assertion is statically safe.

For instance, a C# definition class C<out X> ... means that C is covariant : C<S>

is a subtype of C<T> if S is a subtype of T. The type system’s obligation is to ensure

that type parameter X of C is used in the body of C in a way that guarantees type

safety under this subtyping policy. For example, X cannot appear as the argument

type of a public method in C—a rule colloquially summarized as “the argument type

of a method is a contravariant position”.

By contrast, the type system of Java employs the concept of use-site variance

[34]: a class does not itself state its variance when it is defined. Uses of the class,

however, can choose to specify that they are referring to a covariant, contravariant,

or bivariant version of the class. For instance, a method void meth(C<? extends T>

cx) can accept arguments of type C<T> but also C<S> where S is a subtype of T. An

object with type C<? extends T> may not offer the full functionality of a C<T> object:

the type system ensures that the body of method meth employs only such a subset of

the functionality of C<T> that would be safe to use on any C<S> object (again, with

S a subtype of T). This can be viewed informally as automatically projecting class C

and deriving per-use versions.

Use-site variance is a truly elegant idea. Producing automatically all different vari-

ance flavors from a single class definition is an approach of hard-to-dispute flexibility.

The idea was quickly integrated in Java in the form of wildcards [28, Section 4.5.1]

and it is widely used in standard Java libraries. Despite the conceptual elegance,

6

however, the practical deployment of wildcards has been less than entirely successful.

Among opponents, “wildcards” has become a virtual synonym for a language design

mess. (E.g., Josh Bloch’s presentation at Javapolis 2008 emphasized “We simply

cannot afford another wildcards” [8].) The reason is that use-site variance results

in conceptual complexity, requires anticipation of generality at all usage points, and

postpones the detection of overly restrictive type signatures until their use.

However, the traditional approach of definition-site variance, as used in Scala

and C#, is also hardly free of usability problems. For a class that is not purely

covariant or contravariant, the only way to achieve full genericity is by introducing

specialized interfaces that correspond to the class’s co-, contra-, and bivariant parts.

Consequently, users have to remember the names of these interfaces, library designers

must anticipate genericity, and a combinatorial explosion in the number of introduced

interfaces is possible. (E.g., for a type Triple<X,Y,Z>, we may need an interface for

each of the 33 = 27 possible access combinations, such as “covariant with respect to

X, contravariant with respect to Y and Z”. The number is 33 and not 43 only because

bivariance is not allowed as an explicit annotation.)

It is worth noting that, although definition-site variance is arguably simpler than

use-site variance, it was purposely left out of the recent programming language Dart.

Every generic in Dart is assumed to be covariant in its type parameters. The Dart

programming language specification [36] states the following:

The type system is unsound, due to the covariance of generic types.
This is a deliberate choice (and undoubtedly controversial). Experience
has shown that sound type rules for generics fly in the face of programmer
intuition. It is easy for tools to provide a sound type analysis if they
choose, which may be useful for tasks like refactoring.

Generally, each flavor of variance has its own advantages. Use-site variance is

arguably a more advanced idea, yet it suffers from specific usability problems because

it places the burden on the user of a generic type. (Although one should keep in

7

mind that the users of one generic type are often the implementors of another.)

Definition-site variance may be less expressive, but leaves the burden of specifying

general interfaces with the implementor of a generic. A natural idea, therefore, is

to combine the two flavors in the same language design and allow full freedom: For

instance, when a type is naturally covariant, its definition site can state this property

and relieve the user from any further obligation. Conversely, when the definition site

does not offer options for fully general treatment of a generic, a sophisticated user

can still provide fully general signatures.

This dissertation addresses the shortcomings of current variance mechanisms by

providing theoretical and practical foundations for combining definition-site and use-

site variance in a single language. The thesis of this dissertation is stated below.

Thesis:

Subtype and parametric polymorphism can be leveraged in tandem,
by employing and generalizing the concepts of use-site and definition-
site variance. Concretely, we will show that the definition- and use-site
variance mechanisms can be combined in full generality and type-safety,
to support a programming model with greater opportunity for reusability
of generic code.

1.4 Illustration of Approach

To quickly indicate some of the contributions of this work, this section briefly il-

lustrates one aspect of our approach: inferring definition-site variance. Later chapters

present our approach to combining definition- and use-site variance in detail.

The variance of a class with respect to its type parameters is constrained by the

variance of the positions these type parameters occur in. For instance, an argument

type position is contravariant, while a return type position is covariant. However, in

the presence of recursive type constraints and wildcards, no past technique reasons

in a general way about the variance of a type expression in a certain position. For

8

instance, past techniques would not infer anything other than invariance for classes

C and D:

class C<X> {

X foo (C<? super X> csx) { ... }

void bar (D<? extends X> dsx) { ... }

}

class D<Y> {

void baz (C<Y> cx) { ... }

}

Our approach is based on assigning a variance to every type expression, and

defining an operator, ⊗ (pronounced “transform”), used to compose variances. In our

calculus, inferring the most general variance for the above type definitions reduces

to finding the maximal solution for a constraint system over the standard variance

lattice (∗ is top, o is bottom, + and − are unordered, with a join of ∗ and a meet of

o). If c stands for the (most general) variance of the definition of C<X> with respect

to type parameter X, and d stands for the variance of D<Y> with respect to Y, the

constraints (simplified) are:

c v +

c v −⊗ (− t c)

c v −⊗ (+ t d)

d v −⊗ c

Consider the first of these constraints. Its intuitive meaning is that the variance of

class C (with respect to X) has to be at most covariance, +, (because X occurs as a

return type of foo). Similarly, for the third constraint, the variance of C has to be at

most the variance of type expression D<? extends X> transformed by the variance, −,

of the (contravariant) position where the type expression occurs. The variance of type

expression D<? extends X> itself is the variance of type D joined with the variance of

the type annotation, +.

9

We will see the full rules and definition of ⊗, as well as prove their soundness,

later, but for this example it suffices to know that −⊗+ = −, −⊗− = +, −⊗∗ = ∗,

and − ⊗ o = o. It is easy to see with mere enumeration of the possibilities that

the most general solution has c = + and d = −. Thus, by formulating and solving

these constraints, we correctly infer the most general variance: class C is covariant

with respect to X, and class D is contravariant with respect to Y. We note that the

interaction of wildcards and type recursion is non-trivial. For instance, removing the

“? super” from the type of argument csx would make both C and D be invariant.

1.5 Dissertation Outline

This dissertation is structured as follows. Chapter 2 provides a more detailed

background on definition-site and use-site variance. The presentation of our approach

starts in Chapter 3. That chapter describes how definition- and use-site variance can

be applied from a language-neutral perspective. It presents three fundamental prob-

lems that we address for reasoning about variance. Chapter 4 presents VarLang, a

unifying framework for checking and inferring definition-site variance in a language

that also supports use-site variance. Chapter 5 discusses realistic complications for

adding definition-site variance to Java, a large, complex, main-stream programming

language with intricate features that interact with variance. That chapter also pro-

vides background needed to understand Chapter 6. Chapter 6 presents VarJ, a model

for Java with definition-site variance. Unlike VarLang, VarJ is equipped with an op-

erational semantics. That is, there is a model of execution associated with programs

in VarJ. The type soundness proof ensures runtime-type errors do not occur for well-

typed programs. Since the type soundness proof includes a lot of detail not related to

variance, Chapter 7 focuses on why the variance analysis is safe for program execu-

tion. This dissertation then switches gears to practical applications of the work and

case studies. Chapter 8 describes how we inferred definition-site variance for Java.

10

Chapter 9 describes a refactoring tool that we developed. It refactors Java code gen-

eralizing parametric types by adding wildcard annotations. The tool allows users to

select declarations (variables, method parameters, return types, etc.) to generalize

and works with declarations that are not declared in available source code. The result

of this refactoring is a more general interface that supports greater software reuse.

Chapter 10 presents related work and compares the related work with our approach.

Chapter 11 discusses the implications of this work, possible future work, and plans

to adopt ideas from this work into mainstream languages in the real world.

11

CHAPTER 2

BACKGROUND ON VARIANCE

This chapter offers a brief background on definition- and use-site variance as well

as their relative advantages.

2.1 Definition-site Variance

Languages supporting definition-site variance [31, 51] typically require each type

parameter to be declared with a variance annotation. For instance, Scala [51] requires

the annotation + for covariant type parameters, - for contravariant type parameters,

and invariance as default. A well-established set of rules can then be used to verify

that the use of the type parameter in the generic1 is consistent with the annotation.

In intuitive terms, we can understand the restrictions on the use of type param-

eters as applying to positions. Each typing position in a generic’s signature has an

associated variance. For instance, method return and exception types, supertypes,

and upper bounds of class type parameters are covariant positions; method argument

types and class type parameter lower bounds are contravariant positions; field types

are both co- and contravariant occurrences, inducing invariance. Type checking the

declared variance annotation of a type parameter requires determining the variance

of the positions the type parameter occurs in. The variance of all such positions

should be at least the declared variance of the type parameter. Figure 2.1 presents the

variance lattice. Consider the following templates of Scala classes, where vX , vY , and

1We refer to all generic types (e.g., classes, traits, interfaces) uniformly as “generics”.

12

+

*

–

o

(covariance)

(bivariance)

(contravariance)

(invariance)

⊔

!

Figure 2.1. Standard variance lattice.

vZ stand for variance annotations.2

abstract class RList[vXX] { def get(i:Int):X }

abstract class WList[vY Y] { def set(i:Int, y:Y):Unit }

abstract class IList[vZZ] { def setAndGet(i:Int, z:Z):Z }

The variance vX is the declared definition-site variance for type variable X of the

Scala class RList. If vX = +, the RList class typechecks because X does not occur in

a contravariant position. If vY = +, the WList class does not type check because Y

occurs in a contravariant position (second argument type of method set) but vY = +

implies Y should only occur in a covariant position. IList typechecks only if vZ = o

because Z occurs in both a covariant and a contravariant position.

Intuitively, RList is a read-only list: it only supports retrieving objects. The

return type of a method indicates this “retrieval” capability. Retrieving objects of

type T can be safely thought of as retrieving objects of any supertype of T. Thus, a

read-only list of Ts (RList[T]) can always be safely thought of as a read-only list of

some supertype of Ts (RList[S], where T<:S). This is the exact definition of covariant

subtyping and the reason why a return type is a covariant position. Thus, RList is

covariant in X. Similarly, WList is a write-only list, and is intuitively contravariant.

2In Scala, a method’s return type is written after the method’s name and argument. Also, the
Scala type Unit is the equivalent of Java type void.

13

Its definition supports this intuition: Objects of type T can be written to a write-only

list of Ts (WList[T]) and written to a write-only list of Ss (WList[S]), where T <:S,

because objects of type T are also objects of type S. Hence, a WList[S] can safely be

thought of as a WList[T], if T <:S.

The variance of type variables is transformed by the variance of the context the

variables appear in. Covariant positions preserve the variance of types that appear in

them, whereas contravariant positions reverse the variance of the types that appear

in them. The “reverse” of covariance is contravariance, and vice versa. The “reverse”

of invariance is itself. Thus, we can consider the occurrence of a type parameter to

be initially covariant. For instance, consider again the Scala classes above. In RList,

X only appears as the return type of a method, which preserves the initial covariance

of X, so RList is covariant in X. In WList, Y appears in a contravariant position, which

reverses its initial covariance, to contravariance. Thus, WList is contravariant.

When a type parameter is used to instantiate a generic, its variance is further

transformed by the declared definition-site variance of that generic. For example:

class SourceList[+Z] { def copyTo(to:WList[Z]):Unit }

Suppose the declared definition-site variance of WList (with respect to its single

parameter) is contravariance. In WList[Z], the initial covariance of Z is transformed by

the definition-site variance of WList (contravariance). It is then transformed again by

the contravariant method argument position. As a result, Z appears covariantly in this

context, and SourceList is covariant in Z, as declared. Any variance transformed by

invariance becomes invariance. Thus, if Z had been used to parameterize an invariant

generic, its appearance would have been invariant. In Section 3.1 we generalize and

formalize this notion of transforming variance.

We have so far neglected to discuss bivariance: C<X> is bivariant implies that

C<S><:C<T> for any types S and T. Declaring a bivariant type parameter is not sup-

ported by the widely used definition-site variant languages. At first this seems to

14

not be entirely surprising. For a type parameter to be bivariant, it must only appear

bivariantly in a generic. This means either it does not appear at all, or it appears

only as the type argument to instantiate other bivariant generics. If a type parameter

does not appear in a generic’s signature at all, then it is useless to parameterize over

it; if it is only used to instantiate other bivariant generics, it could just as well be

replaced by any arbitrary type, since, by definition, a bivariant generic does not care

what type it is instantiated with. Nevertheless, this argument ignores type recursion.

As we discuss in Section 3.3 and in our experimental findings, several interesting

interface definitions are inherently bivariant.

Finally, instead of declaring the definition-site variance of a type parameter and

checking it for consistency, it is tempting to infer the most general such variance from

the definition of a generic. This becomes hard in the presence of type recursion and

supporting it in full generality is one of the contributions of our work.

2.2 Use-site Variance

An alternative approach to definition-site variance is use-site variance [12,34,63].

Instead of declaring the variance of X at its definition site, generics are assumed to

be invariant in their type parameters. However, a type-instantiation of C<X> can be

made co-, contra-, or bivariant using variance annotations.

For instance, using the Java wildcard syntax, C<? extends T> is a covariant in-

stantiation of C, representing a type “C-of-some-subtype-of-T”. C<? extends T> is a

supertype of all type-instantiations C<S>, or C<? extends S>, where S<:T. In exchange

for such liberal subtyping rules, type C<? extends T> can only access fully those meth-

ods and fields of C in which X appears covariantly. (Other methods can be used only

with type-neutral values, e.g., called with null instead of values of type X.) In de-

termining this, use-site variance applies the same set of rules used in definition-site

15

variance, with the additional condition that the upper bound of a wildcard is consid-

ered a covariant position, and the lower bound of a wildcard a contravariant position.

For example, consider an invariant generic class List that uses its type parameter

in both covariant and contravariant positions:

class List<X> {

... // other members that don’t affect variance

void add(int i, X x) { ... } // requires a List<? super X>

X get(int i) { ... } // requires a List<? extends X>

int size() { ... } // requires a List<?>

}

List<? extends T>, only has access to method “X get(int i)”, but not method

“void add(int i, X x)”. (More precisely, method add can only be called with null

for its second argument.)

Similarly, List<? super T> is the contravariant version of List, and is a supertype

of any List<S> and List<? super S>, where T <:S. Of course, List<? super T> has

access only to methods and fields in which X appears contravariantly or not at all.

(Method get returns Object for a List<? super T>.)

Use-site variance also allows the representation of the bivariant version of a

generic. In Java, this is accomplished through the unbounded wildcard: List<?>.

Using this notation, List<S> <:List<?>, for any S. The bivariant type, however, only

has full access to methods and fields in which the type parameter does not appear

at all. In definition-site variance, these methods and fields would have to be factored

out into a non-generic class.

2.3 A Comparison

Both approaches to variance have their merits and shortcomings. Definition-site

variance enjoys a certain degree of conceptual simplicity: the generic type instantia-

tion rules and subtyping relationships are clear. However, in the worst case the class

or interface designer must pay for such simplicity by splitting the definitions of data

16

types into co-, contra, and bivariant versions. This can be an unnatural exercise.

For example, the data structures library for Scala contains immutable (covariant)

and mutable (invariant) versions of almost every data type—and this is not even a

complete factoring of the variants, since it does not include contravariant (write-only)

versions of the data types.

The situation gets even more complex when a generic has more than one type

parameter. In general, a generic with n type parameters needs 3n (or 4n if bivariance is

allowed as an explicit annotation) interfaces to represent a complete variant factoring

of its methods. Arguably, in practice, this is often not necessary.

Use-site variance, on the other hand, allows users of a generic to create co-, contra-,

and bivariant versions of the generic on the fly. This flexibility allows class or interface

designers to implement their data types in whatever way is natural. The users of

these generics must pay the price, by needing to carefully consider the correct use-

site variance annotations, so that the type can be as general as possible. This might

not seem very difficult for a simple instantiation such as List<? extends Number>.

However, type signatures can very quickly become complicated. For instance, the

following method signature is part of the Apache Commons-Collections Library:

Iterator<? extends Map.Entry<? extends K,V>>

createEntrySetIterator(Iterator<? extends Map.Entry<? extends K,V>>)

2.4 Generalizing the Design Space

Our goal is to combine the positive aspects of use-site and definition-site variance,

while mitigating their shortcomings. The key is to have a uniform and general treat-

ment of definition-site and use-site variance in the same type system. This creates

opportunities for interesting language designs. For instance:

• A language can combine explicit definition- and use-site variance annotations

and perform type checking to ensure their soundness. For example, Scala or

17

C# can integrate wildcards in their syntax and type reasoning. This will give

programmers the opportunity to choose not to split the definition of a type just

to allow more general handling in clients. If, for instance, a List is supposed

to support both reading and writing of data, then its interface can be defined

to include both kinds of methods, and not need to be split into two types.

The methods that use List can still be made fully general, as long as they

specify use-site annotations. Generally, allowing both kinds of variance in a

single language ensures modularity: parts of the code can be made fully general

regardless of how other code is defined. This reduces the need for anticipation

and lowers the burden of up-front library design.

Similarly, Java can integrate explicit definition-site variance annotations for

purely variant types. This will reduce the need for use-site annotation and the

risk of too-restricted types.

• A language can combine use-site variance annotations with inference of definition-

site variance (for purely variant types). This is the approach that we im-

plement and explore in later sections. Consider the long type signature of

method createEntrySetIterator mentioned above. It contains two wildcard-

instantiations of Iterator and two more of Map.Entry totaling four wildcard-

instantiations. Our approach can infer that Iterator is covariant, and Map.Entry

is covariant in its first type parameter—without having to change the definition

of either generic. Thus, the following signature in our system has exactly the

same generality without any wildcards:

Iterator<Map.Entry<K,V>>

createEntrySetIterator(Iterator<Map.Entry<K,V>>)

Furthermore, specifying the most general types proves to be challenging for even

the most seasoned Java programmers: our experiments reveal that (at least) 7%

18

of the types in method signatures of the Java core library (java.*) are overly

specific. We will discuss the details of our findings in Section 8.2.

19

CHAPTER 3

REASONING ABOUT VARIANCE

In order to meet our goal of a general, unified framework (for both checking

and inference of both use-site and definition-site variance) we need to solve three

fundamental problems. The first is that of composing variances, the second deals

with the integration of use-site annotations in definition-site reasoning, and the third

concerns the handling of recursive types. The concepts from this chapter establish

formal foundations that are applied throughout the remainder of this dissertation.

To the best of our knowledge, this work is the first to solve all three problems in their

full generality.

3.1 Variance Composition

In earlier variance formalisms, reasoning about nested types, such as A<B<X>>, has

been hard. Igarashi and Viroli pioneered the treatment of variant types as unions

of sets of instances. Regarding nested types, they note (Section 3.3 of [34]): “We

could explain more complicated cases that involve nested types but it would get

harder to think of the set of instances denoted by such types.” The first observation

of our work is that it is quite easy to reason about nested types, not as sets of

instances but based on variance composition. That is, given two generic types A<X>

and B<X>, if the (definition-site) variances of A and B (with respect to their type

parameters) are known, then we can compute the variance of type A<B<X>>.1 This

1This relies on a natural extension of the definition of variance, to include the concept of a
variance of an arbitrary type expression with respect to a type variable. E.g., type expression E is

20

composition property generalizes to arbitrarily complex-nested type expressions. The

basis of the computation of composed variances is the transform operator, ⊗, defined

in Figure 3.1. The relation v1 ⊗ v2 = v3 intuitively denotes the following: If the

variance of a type variable X in type expression E is v2 and the definition-site variance

of the type parameter of a class C is v1,2 then the variance of X in type expression

C<E> is v3.

Definition of variance transformation: ⊗
+⊗+ = + −⊗+ = − ∗ ⊗+ = ∗ o⊗+ = o
+⊗− = − −⊗− = + ∗ ⊗ − = ∗ o⊗− = o
+⊗ ∗ = ∗ − ⊗ ∗ = ∗ ∗ ⊗ ∗ = ∗ o⊗ ∗ = o
+⊗ o = o −⊗ o = o ∗ ⊗ o = ∗ o⊗ o = o

Figure 3.1. Variance transform operator.

The behavior of the transform operator is simple: invariance transforms every-

thing into invariance, bivariance transforms everything into bivariance, covariance

transforming a variance leaves it the same, and contravariance reverses it. (The re-

verse of bivariance is itself, the reverse of invariance is itself.) To sample why the

definition of the transform operator makes sense, let us consider some of its cases.

(The rest are covered exhaustively in our proof of soundness.)

• Case +⊗− = −: This means that type expression C<E> is contravariant with

respect to type variable X when generic C is covariant in its type parameter and

type expression E is contravariant in X. This is true because, for any T1, T2:

covariant in X iff T1 <: T2 =⇒ E[T1/X] <: E[T2/X]. (These brackets denote substitution of a type
for a type variable and should not be confused with the Scala bracket notation for generics, which
we shall avoid except in pure-Scala examples.)

2For simplicity, we often refer to generics with a single type parameter. For multiple type pa-
rameters the same reasoning applies to the parameter in the appropriate position.

21

T1 <: T2 =⇒ (by contravariance of E)

E[T2/X] <: E[T1/X] =⇒ (by covariance of C)

C<E[T2/X]> <: C<E[T1/X]> =⇒

C<E>[T2/X] <: C<E>[T1/X]

Hence, C<E> is contravariant with respect to X.

• Case ∗⊗ v = ∗: This means that type expression C<E> is bivariant with respect

to type variable X when generic C is bivariant in its type parameter, regardless

of the variance of type expression E (even invariance). This is true because:

for any types S and T =⇒ (by bivariance of C)

C<E[S/X]> <: C<E[T/X]> =⇒

C<E>[S/X] <: C<E>[T/X]

Hence, C<E> is bivariant with respect to X.

As can be seen by inspection of all cases in Figure 3.1, operator ⊗ is associative.

The operator would also be commutative, except for the case ∗ ⊗ o = ∗ 6= o = o⊗ ∗.

This is a design choice, however. With the types-as-sets approach that we follow in

our formalization, operator ⊗ would be safe to define as a commutative operator, by

changing the case o⊗∗ to return ∗. To see this, consider the meaning of o⊗∗. When

generic C is invariant with respect to its type parameter X and type expression E is

bivariant in X, should type expression C<E> be bivariant or invariant with respect to

X? The answer depends on what we mean by “invariance”. We defined invariance

earlier as “C<S><:C<T> only if S = T”. Is the type equality “S = T” syntactic or

semantic? (I.e., does type equality signify type identity or equivalence, as can be

22

established in the type system?) If type equality is taken to be syntactic, then the

only sound choice is o⊗ ∗ = o:

C<E>[S/X] <: C<E>[T/X] =⇒

C<E[S/X]> <: C<E[T/X]> =⇒ (by invariance of C)

E[S/X] = E[T/X] =⇒ (assuming X occurs in E)

S = T

Hence, C<E> is invariant with respect to X. If, however, the definition of invariance

allows for type equivalence instead of syntactic equality, then it is safe to have o⊗∗ =

∗: By the bivariance of E, E[S/X] <: E[T/X] and E[T/X] <: E[S/X]. Hence, E[S/X]

is equivalent to E[T/X] and consequently C<E>[S / X] can be shown equivalent to

C<E>[T / X] (assuming a natural extensionality axiom in the type system).

We chose the conservative definition, o ⊗ ∗ = o, in Figure 3.1 to match that

used in our implementation of a definition-site variance inference algorithm for Java,

discussed later. Since, in our application, bivariance is often inferred (not stated by

the programmer) and since Java does not naturally have a notion of semantic type

equivalence, we opted to avoid the possible complications both for the user and for

interfacing with other parts of the language.

Similar reasoning to the transform operator is performed in Scala to check definition-

site variance annotations. [51, Section 4.5] defines the variance position of a type

parameter in a type or template and states “Let the opposite of covariance be con-

travariance, and the opposite of invariance be itself.” It also states a number of rules

defining the variance of the various type positions such as “The variance position of a

method parameter is the opposite of the variance position of the enclosing parameter

clause.” The ⊗ operator is a generalization of the reasoning stated in that section;

it adds the notion of bivariance and how the variance of a context transforms the

23

variance of a type actual in general instead of defining the variance of a position for

language-specific constructs.

3.2 Integration of Use-Site Variance

The second new element of our work is the integration of use-site annotations in

the reasoning about definition-site variance. Earlier work such as [34] showed how

to reason about use-site variance for Java. Emir et al [24] formalized definition-site

variance as it occurs in C#.3 However, no earlier work explained how to formally

reason about variance in a context including both definition-site and use-site variance.

For example, suppose Scala is extended with support for use-site variance, v is a

variance annotation (+, −, or o), and the following are syntactically legal Scala

classes.

abstract class C[vX] {

def set(arg1:X):Unit

}

abstract class D[+X] {

def compare(arg2:C[+X]):Unit

}

Section 2.1 gave an overview of how declared definition-site variance annotations

are type checked in Scala. Since class C only contains method set, it typechecks with

v = - because X only appears contravariantly in the type signature of method set.

However, type checking class D with method compare requires reasoning about the

variance of X in the argument type expression C[+X].

In our unified framework, a use-site annotation corresponds to a join operation in

the standard variance lattice (Figure 2.1). That is, if generic C<X> has definition-site

variance v1 with respect to X, then the type expression C[v2X] has variance v1 t v2

with respect to X.

3Their calculus is an extension of C# minor [40].

24

Intuitively, this rule makes sense: When applying use-site variance annotations,

it is as if we are removing from the definition of the generic the elements that are

incompatible with the use-site variance. For instance, when taking the covariant

version, C[+X], of our Scala class C, above, we can only access the members that use

type parameter X covariantly—e.g., method set would be inaccessible. Hence, if class

C is naturally contravariant in X (meaning that X only occurs contravariantly in the

body of C), then C[+X] is a type that cannot access any member of C that uses X.

Thus, C[+X] is bivariant in X: the value of the type parameter cannot be used. This is

precisely what our lattice join approach yields: + t− = ∗. As a result, any declared

definition-site variance for class D would be legal.

To see more rigorously why the lattice-join approach is correct, let us consider the

above case formally. (Other cases are covered exhaustively in our proof of soundness.)

Given a contravariant generic C, why is it safe to infer that C<+X> (C[+X] in Scala

syntax) is bivariant in X? We start from the Igarashi and Viroli approach to variance:

All types are in a lattice with subtyping as its partial order and the meaning of C<+T>

is
⊔

T′<:T C<T’>. This definition yields the standard variance theorems T <: T′ ⇒

C<+T> <: C<+T’> and C<T> <: C<+T>. Consider then the bottom element of the type

lattice. (This lattice depends on the type system of the language and is not to be

confused with the simple variance lattice of Figure 2.1.) We have:

⊥ <: T⇒ (by first theorem above)

C<+⊥> <: C<+T> (1)

But also, for any type T’:

⊥ <: T′ ⇒ (C contravariant)

C<T’> <: C<⊥> (2)

25

Therefore:

C<+T> = (by variance def)

⊔

T′<:T

C<T’> <: (by (2), above)

C<⊥> <: (by second theorem above)

C<+⊥> (3)

Hence, from (1) and (3), all C<+T> are always subtype-related, i.e., have type C<*>.

3.2.1 A Note on Scala:

To enable interoperability between Scala and Java, Scala represents Java wild-

card types as existential types. For example, a Java Iterator<?> could be written as

Iterator[T] forSome { type T } or more compactly as Iterator[]. Similarly, the

type Java Iterator<? extends Comparator> maps to the Scala type Iterator[<:

Comparator], and the type Java Iterator<? super Comparator> maps to the Scala

type Iterator[>: Comparator]. However, Scala variance reasoning with existen-

tial types is too conservative because it just assumes that the use-site variance anno-

tation overrides the definition-site variance instead of reasoning about how they both

interact. For example, consider the Scala traits below.

trait GenType[+Y] { def get(i:Int):Y }

trait Wild[-X] {

def add(elem:X):Unit

// flagged as error but actually safe

def compare(w:GenType[_ >: X]):Unit

}

The Scala compiler flags an error because it assumes the variance of X in GenType[

>: X] is contravariance. This contravariance occurrence is then negated (trans-

formed by contravariance) to covariance because it occurs in an argument (contravari-

ant) position. Because the Scala compiler assumes X occurs in a covariant position in

26

compare’s argument type but the definition-site of X in trait Wild is contravariance,

Scala flags this occurrence as an error. However, it is safe to assume that the vari-

ance of X in GenType[>: X] is bivariance. Because GenType is covariant in its type

parameter, the contravariant version of GenType essentially provides no members of

GenType that contain GenType’s type parameter in their type signature. Our joining

of the definition-site and use-site variances takes advantage of this reasoning enabling

more safe code to type check.

3.3 Recursive Variances

The third novel element of our approach consists of reasoning about recursive

type definitions. This is particularly important for inferring (instead of just check-

ing) definition-site variance. With type recursion, the unknown variance becomes

recursively defined and it is not easy to compute the most general solution. Further-

more, type recursion makes the case of bivariance quite interesting. In contrast to

non-recursive types, recursive types can be bivariant even when their type parameter

is used. For instance the following type is safely bivariant:

interface I<X> { I<X> foo (I<X> i); }

To appreciate the interesting complexities of reasoning about type recursion, we

discuss some cases next.

3.3.1 Recursive Variance Type 1

The following interface demonstrates a most simple form of recursive variance:

interface C1<X> { C1<X> foo1 (); }

The variance of C1 depends on how X appears in its signature. The only appearance

of X is in the return type of foo1, a covariant position, as the argument to C1. Thus,

the variance of X in this appearance is its initial covariance, transformed by the

27

variance of C1—the very variance we are trying to infer! This type of recursive

variance essentially says that the variance of C1 is the variance of C1, and thus can

be satisfied by any of the four variances: covariance, contravariance, invariance, or

bivariance. Without any more appearances of X, the most liberal form of variance for

C1 is bivariance.

If X does appear in other typing positions, however, the variance of its declaring

generic is completely determined by the variance of these appearances:

interface C2<X> extends C1<X> { void bar2 (X x); }

interface C3<X> extends C1<X> { X bar3 (); }

The definition-site variance of C2 is constrained by the variance of C1, as well as

X’s appearance as a method argument type—a contravariant appearance. Since C1’s

variance is completely unconstrained, C2 is simply contravariant. Similarly, C3 is only

constrained by X’s appearance as a method return type—a covariant appearance—and

is thus covariant, as well.

The above pattern will be common in all our recursive variances. Without any

constraints other than the recursive one, a generic is most generally bivariant. When

other constraints are factored in, however, the real variance of C1 can be understood

informally as “can be either co- or contravariant”.

3.3.2 Recursive Variance Type 2

The next example shows a similar, but much more restrictive form of recursive

variance:

interface D1<X> { void foo1 (D1<X> dx); }

The variance of D1 is again recursively dependent on itself, only this time X ap-

pears in D1<X> which is a method argument. If a recursive variance did not impose

any restrictions in a covariant position, why would it be any different in a contravari-

ant position? Interestingly, the contravariance means that the variance of D1 is the

28

variance of D1 transformed by the contravariance. This means the variance of D1 must

be the reverse of itself!

The only two variances that can satisfy such a condition are bi- and invariance.

Again, without any other uses of X, D1<X> is most generally bivariant.

However, if X does appear either co- or contravariantly in combination with this

type of recursive variance, the resulting variance can only be invariance:

interface D2<X> extends D1<X> { void bar2 (X x); }

interface D3<X> extends D1<X> { X bar3 (); }

In the above example, X appears contravariantly in D2, as the argument of bar2.

At the same time, the variance of X must be the opposite of itself, as constrained by

the recursive variance in supertype D1. This is equivalent to X appearing covariantly,

as well. Thus, the only reasonable variance for D2 is invariance. A similar reasoning

results in the invariance of D3.

Thus, recursive variance of this type can be understood informally as “cannot be

either co- or contravariant” when other constraints are taken into account.

3.3.3 Recursive Variance Type 3

The following example shows yet a third kind of recursive variance:

interface E1<X> { E1<E1<X>> foo1 (); }

The variance of E1 is the same as X’s variance in E1<E1<X>>. That is, the initial

covariance of X, transformed by the variance of E1—twice. This type of recursive

variance can, again, like the previous two, be satisfied by either in- or bivariance.

However, the key insight is that, no matter whether E1 is contra- or covariant, any

variance transformed by E1 twice (or any even number of times, for that matter) is

always preserved. This is obvious if E1 is covariant. If E1 is contravariant, being

transformed by E1 twice means a variance is reversed, and then reversed again, which

29

still yields a preserved variance. Thus, unless E1 is bi- or invariant, X in E1<E1<X>> is

always a covariant appearance.

Thus, when other appearances of X interact with this form of recursive variance,

its informal meaning becomes “cannot be contravariant”. In other words, when this

recursive variance is part of the constraints of a type, the type can be bivariant,

covariant, or invariant. The following examples demonstrate this:

interface E2<X> extends E1<X> { void bar2 (X x); }

interface E3<X> extends E1<X> { X bar3 (); }

X appears contravariantly in E2, eliminating bivariance and covariance as an option

for E2. However, X also appears in E1<E1<X>> through subtyping, which means it

cannot be contravariant. Thus, E2 is invariant.

In E3, X appears covariantly, and X in E1<E1<X>> can still be covariant. Thus, E3

can safely be covariant.

3.3.4 Recursive Variance Type 4

Our last example of recursive variance is also twice constrained by itself. But this

time, it is further transformed by a contravariance:

interface F1<X> { int foo1(F1<F1<X>> x); }

The variance of F1 is the same as X’s variance in F1<F1<X>>, then transformed by

the contravariant position of the method argument type. That is, X’s initial covari-

ance, transformed twice by the variance of F1, then reversed. Like all the other recur-

sive variances, bi- and invariance are options. However, since the twice-transformation

by any variance preserves the initial covariance of X in F1<F1<X>>, the transformation

by the contravariance produces a contravariance. Thus, if F1 cannot be bivariant, it

must be contravariant (or invariant).

In other words, along with other constraints, F1 has the informal meaning: “cannot

be covariant”. For instance:

30

interface F2<X> extends F1<X> { void bar2 (X x); }

interface F3<X> extends F1<X> { X bar3 (); }

In F2, X appears contravariantly as a method argument. Combined with the

recursive variance through subtyping F1<X>, F2 can be contravariant. In F3, however,

X appears covariantly. With bivariance and contravariance no longer an option, the

only variance satisfying both this covariant appearance and the recursive variance of

F1<F1<X>> is invariance. Thus, F3 is invariant in X.

3.3.5 Handling Recursive Variance

The above list of recursive variances is not exhaustive, although it is representative

of most obvious cases. It should be clear that handling recursive variances in their

full generality is hard. The reason our approach can handle recursive variance well

is that all reasoning is based on constraint solving over the standard variance lattice.

Constraints are simple inequalities (“below” on the lattice) and can capture type

recursion by having the same constant or variable (in the case of type inference)

multiple times, both on the left and the right hand side of an inequality.

3.3.6 A Note on Scala:

Scala’s reasoning about recursive variances is limited because it does not have

the notion of bivariance; it does not allow the most general types to be specified.

Consider the three following traits.

trait C1[vXX] { def foo:C1[X] }

trait C2[vY Y] extends C1[Y] { def bar(arg:Y):Unit }

trait C3[vZZ] extends C1[Z] { def baz:Z }

Because trait C1 has type 1 recursive variance, if Scala supported bivariant annota-

tions, it would be safe to set the definition-site variances as follows: vX = ∗, vY = −,

and vZ = +. Since Scala does not support bivariant annotations, no assignments

allow both trait C2 to be contravariant and trait C3 to be covariant. For example,

31

setting vX = + implies attempting to compile trait C2 will generate an error because

Scala infers Y occurs covariantly in the base type expression occurring in “C2[-Y]

extends C1[Y]”; since Y is declared to be contravariant, Y should not occur in a co-

variant position in the definition of C2. Below are the only three assignments allowed

by the Scala compiler.

vX = − vY = − vZ = o

vX = + vY = o vZ = +

vX = o vY = o vZ = o

32

CHAPTER 4

VARLANG: A CORE LANGUAGE AND CALCULUS

We combine all the techniques of the previous section into a unified framework for

reasoning about variance. We introduce a core language, VarLang [1], for describing

the various components of a class that affect its variance. Reasoning is then performed

at the level of this core language, by translating it to a set of constraints.

4.1 Syntax

A sentence S in VarLang is a sequence (treated as a set) of modules, the syntax

of which is given in Figure 4.1.

M ∈ Module ::= module C<X> { Tv }
T ∈ Type ::= X | C<vT>

v ∈ Variance ::= + | − | ∗ | o
C ∈ ModuleNames is a set of module names

X ∈ VariableNames is a set of variable names

Figure 4.1. Syntax of VarLang

Note that variance annotations, v, (+/-/*/o) can appear in two places: at the top

level of a module, as a suffix, and at the type level, as a prefix. Informally, a v at

the top level means that the corresponding type appears covariantly/contravariant-

ly/invariantly (i.e., in a covariant/contravariant/invariant position). A v on a type

means that the type parameter is qualified with the corresponding use-site variance

33

annotation, or no annotation (for invariance). For instance, consider the VarLang

sentence:

module C<X> { X+, C<-X>-, void+, D<+X>- }

module D<Y> { void+, C<oY>- }

This corresponds to the example from Section 1.4. That is, the informal meaning

of the VarLang sentence is that:

• In the definition of class C<X>, X appears covariantly; C<? super X> appears con-

travariantly; void appears covariantly; D<? extends X> appears contravariantly.

• In the definition of class D<Y>, void appears covariantly; C<Y> appears con-

travariantly.

4.2 VarLang Translation

Our reasoning approach consists of translating a VarLang sentence S into a set

of constraints over the standard variance lattice (Figure 2.1). The constraints are

“below”-inequalities and contain variables of the form var(X; T) and var(X; C), pro-

nounced “variance of type variable X in type expression T” and “(definition-site) vari-

ance of type variable X in generic C”. The constraints are then solved to compute

variances, depending on the typing problem at hand (checking or inference). The fol-

lowing rules produce the constraints. (Note that some of the constraints are vacuous,

since they establish an upper bound of ∗, but they are included so that the rules cover

all syntactic elements of VarLang and the translation from a VarLang sentence to a

set of constraints is obvious.)

var(X; C) v vi ⊗ var(X; Ti),∀i,

where module C<X> { Tv } ∈ S
(4.1)

34

var(X; C<>) v ∗ (4.2)

var(X; Y) v ∗, where X 6= Y (4.3)

var(X; X) v + (4.4)

var(X; C<vT>) v (vi t var(Y; C))⊗ var(X; Ti), ∀i,

where Y is the i-th type variable in the definition of C.

(4.5)

Rule 4.1 specifies that for each type Ti in module C, the variance of the type

variable X in C must be below the variance of X in Ti transformed by vi, the variance

of the position that Ti appears in. This corresponds to the traditional reasoning about

definition site variance from Section 2.1.

Rules 4.2 and 4.3 specify that the X can have any variance in a type expression for

which it does not occur in. Rule 4.4 constrains the initial variance of a type variable

to be at most covariance.

Rule 4.5 is the most interesting. It integrates our reasoning about how to com-

pose variances for complex expressions (using the transform operator, as described in

Section 3.1) and how to factor in use-site variance annotations (using a join in the

variance lattice, as described in Section 3.2).

Note that the rules use our transform operator in two different ways: to combine

the variance of a position with the variance of a type, and to compose variances.

We prove the soundness of the above rules denotationally—that is, by direct appeal

to the original definition and axioms of use-site variance [34]. The proof can be found

in Appendix A.

4.2.1 Example

We can now revisit in more detail the example from the Introduction, containing

both recursive variance and wildcards:

35

class C<X> {

X foo (C<? super X> csx) { ... }

void bar (D<? extends X> dsx) { ... }

}

class D<Y> { void baz (C<Y> cx) { ... } }

As we saw, the corresponding VarLang sentence is:

module C<X> { X+, C<-X>-, void+, D<+X>- }

module D<Y> { void+, C<oY>- }

The generated constraints (without duplicates) are:

var(X; C) v +⊗ var(X; X) (rule 4.1)

var(X; X) v + (rule 4.4)

var(X; C) v −⊗ var(X; C<-X>) (rule 4.1)

var(X; C<-X>) v (− t var(X; C))⊗ var(X; X) (rule 4.5)

var(X; C) v +⊗ var(X; void) (rule 4.1)

var(X; void) v ∗ (rule 4.2)

var(X; C) v −⊗ var(X; D<+X>) (rule 4.1)

var(X; D<+X>) v (+ t var(Y; D))⊗ var(X; X) (rule 4.5)

var(Y; D) v +⊗ var(Y; void) (rule 4.1)

var(Y; void) v ∗ (rule 4.2)

var(Y; D) v −⊗ var(Y; C<oY>) (rule 4.1)

var(Y; C<oY>) v (o t var(X; C))⊗ var(Y; Y) (rule 4.5)

var(Y; Y) v + (rule 4.3)

4.3 Revisiting Recursive Type Variances

Armed with our understanding of variance requirements as symbolic constraints

on a lattice, it is quite easy to revisit practical examples and understand them quickly.

36

For instance, what we called type 2 recursive variance in Section 3.3 is just an instance

of a recursive constraint c v − ⊗ c, where c is some variable of the form var(X; C).

This is a case of a type that recursively (i.e., inside its own definition) occurs in a

contravariant position. (Of course, the recursion will not always be that obvious:

it may only become apparent after other constraints are simplified and merged.) It

is easy to see from the properties of the transform operator that the only solutions

of this constraint are o and ∗; i.e., “cannot be either co- or contravariant” as we

described in Section 3.3. If c = +, then the constraint generated by type 2 recursive

variance would be violated, since c = + 6v − ⊗ c = − ⊗ + = −. Similar reasoning

shows c cannot be − and satisfy the constraint.

4.4 Constraint Solving

Checking if a variance satisfies a constraint system (i.e., the constraints generated

for a VarLang module) corresponds to checking definition-site variance annotations in

type definitions that can contain use-site variance annotations. Analogously, inferring

the most general definition-site variances allowed by a type definition corresponds to

computing the most general variances that satisfy the constraint system representing

the type definition. The trivial and least general solution that satisfies a constraint

system is assigning the definition-site variance of all type parameters to be invariance.

Assigning invariance to all type parameters is guaranteed to be a solution, since

invariance is the bottom element, which must be below every upper bound imposed

by the constraints. Stopping with this solution would not take advantage of the

subtyping relationships allowed by type definitions. Fortunately, the most general

solution is always unique and can be computed efficiently by fixed-point computation

running in polynomial time of the program size (number of constraints generated).

The only operators in constraint systems are the binary operators t and ⊗. Both

of these are monotone, as can be seen with the variance lattice and Figure 3.1.

37

Every constraint system has a unique maximal solution because there is guaran-

teed to be at least one solution (assign every type parameter invariance) and solutions

to constraint systems are closed under point-wise t; we get a maximal solution by

joining all of the greatest variances that satisfy each constraint. Because operators t

and ⊗ are monotone, we can compute the maximal solution efficiently with fixed point

iteration halting when the greatest fixed point of the equations has been reached. We

demonstrate this algorithm below by applying it to the example Java classes C and D

from Section 4.2.

First, because we are only interested in inferring definition-site variance, we only

care about computing the most general variances for terms of the form var(X; C) but

not var(X; T). We can expand var(X; T) terms with their upper bounds containing

only unknowns of the form var(X; C) Consider the constraint generated from foo’s

argument type: var(X; C) v −⊗ var(X; C<-X>). Because we are computing a maximal

solution and because of the monotonicity of t and ⊗, we can replace var(X; C<-X>)

and var(X; X) by their upper bounds, rewriting the constraint as:

var(X; C) v −⊗ (− t var(X; C))⊗
var(X;X)︷︸︸︷

+︸ ︷︷ ︸
var(X;C<-X>)

Lastly, we can ignore type expressions that do not mention a type parameter be-

cause they impose no real upper bound; their upper bound is the top element (e.g.,

var(X; void) v ∗). This leads to the following constraints generated for the example

two Java classes:

38

foo return type =⇒ var(X; C) v +⊗ +︸︷︷︸
var(X;X)

foo arg type =⇒ var(X; C) v −⊗ (var(X; C) t −)︸ ︷︷ ︸
var(X;C<-X>)

bar arg type =⇒ var(X; C) v −⊗ (var(Y; D) t+)︸ ︷︷ ︸
var(X;D<+X>)

baz arg type =⇒ var(Y; D) v −⊗ (var(X; C) t o)︸ ︷︷ ︸
var(Y;C<oY>)

For each expanded constraint r v l in a constraint system, r is a var(X; C) term

and l is an expression where the only unknowns are var(X; C) terms. The greatest

fixed-point of a constraint system is solved for by, first, assigning every var(X; C) term

to be ∗ (top). Each constraint r v l is then transformed to r ← lur, since r need not

increase from the value it was lowered to by other assignments. The last step is to

iterate through the assignments for each constraint until the var(X; C) terms no longer

change, which results in computing the greatest fixed-point. Finally, computing the

greatest fixed-point runs in at most 2n iterations, where n is the number of constraint

inequalities, since for each r ← l u r, r can decrease at most 2 times to invariance

(bottom) from initially being bivariance (top).

39

CHAPTER 5

TOWARDS INDUSTRIAL STRENGTH LANGUAGES

The VarLang calculus of Chapter 4 proposes a unifying framework for checking and

inferring both definition- and use-site variance in a language. That proposal is not

accompanied by a language operational semantics however—its proof of soundness

is expressed as a meta-theorem, i.e., under assumptions over what an imaginary

language’s type system should be able to prove about sets of values. This meta-

theorem is welcome as an intuition about why it makes sense to combine variances

in a certain way. VarLang is designed to ignore language specific constructs that are

orthogonal to the denotational meaning of variance and would make our soundness

proof be of the same complexity as in e.g., TameFJ [12]. Due to the novelty of both

the problem we were addressing and our approach, we followed the philosophy stated

in classic literature [32]:

Often it is sensible to choose a model that is less complete but more
compact, offering maximum insight for minimum investment.

However, VarLang did not establish a firm connection with any real programming

language. For instance, in VarLang programs, the variance of a position that a type

occurs in is given. This is not case in realistic languages like Java. This causes a

straightforward, VarLang-based algorithm for inferring definition-site variance to be

overly conservative. For instance, our early application of VarLang [1] did not try

to infer the most general variance induced by polymorphic methods: if a class type

parameter appears at all in the upper bound of a type parameter of a polymorphic

method, we considered this to be an instance of an invariant position, the most

40

restrictive kind. As a result, a generic would be inferred to be invariant relative to its

type parameter if this type parameter occurred in an upper bound of a (polymorphic)

method’s type parameter. We will see in Chapter 6 that upper bounds of method

type parameters are in contravariant positions.

Futhermore, VarLang is not defined with an operational semantics. In other words,

programs written in VarLang have no execution behavior associated with them. The

proof of VarLang’s soundness (Theorem 3) does not show how to prove that particular

rules for variant subtyping (subtyping between instantiations of a single type) do not

cause runtime type errors. Since proving the absense of runtime type errors is a key

goal of a type system, that vital question is not addressed by VarLang.

We next investigate realistic complications by developing the VarJ calculus, a

type system based on Java, presented in Chapter 6. Subsequent sections in this

chapter will provide background on existential types and other concepts required to

understand Chapter 6. VarJ achieves a safe synergy of use-site and definition-site

variance, while supporting the full complexities of the Java realization of variance,

including F-bounded polymorphism and wildcard capture. We show that the inter-

action of these features with definition-site variance is non-trivial and offer a full

proof of soundness—the first in the literature for an approach combining variance

mechanisms. The work on VarJ makes several contributions. At the high level:

• Compared to the type systems of Java, C#, or Scala, our combination of

definition-site and use-site variance allows the programmer to pick the best tool

for the job. Libraries can avoid offering different flavors of interfaces just to

capture the notion of, e.g., “the covariant part of a list” vs. “the contravariant

part of a list”. Conversely, users can often use purely-variant types more easily

and with less visual clutter if the implementor of that type had the foresight to

declare its variance.

41

• Our approach maintains other features of the Java type system, namely full

support for wildcards, which are a mechanism richer than plain use-site variance

(e.g., [33]) and allow uses directly inspired by existential types.

• We provide a framework for determining the variance of the various positions

in which a type can occur. (For example, why is the upper bound of the type

parameter of a polymorphic method a contravariant position?)

Also, at the technical level:

• We show how definition-site variance interacts in interesting ways with advanced

typing features, such as existential types, F-bounded polymorphism, and wild-

card capture. A naive application of our earlier work [1] to Java would result

in unsoundness, as we show with concrete examples. (Our earlier approach

avoided unsoundness when applied to actual Java code by making several over-

conservative assumptions to completely eliminate any interaction between, e.g.,

definition-site variance and F-bounded polymorphism.)

• We clarify and extend the TameFJ formalism with definition-site variance.

TameFJ is a thorough, highly-detailed formalism and extending it is far from a

trivial undertaking. The result is that we offer the first full formal modeling and

proof of soundness for a language combining definition- and use-site variance.

5.1 Realistic Complications

The main contribution of VarJ consists of formalizing and proving sound the

combination of definition- and use-site variance in the context of Java. In order to

do so, we need to reason about the interaction of definition-site variance with many

complex language features, such as F-bounded polymorphism, polymorphic methods,

bounds on type parameters, and existential-types (arising in the use of wildcards).

This interaction is highly non-trivial, as we see in examples next.

42

5.2 Generic Methods

In addition to classes having type parameters, Java methods may also be declared

with type parameters. Such methods are known as polymorphic methods or generic

methods [28, Section 8.4.4]. Variance complications involving generic methods will

be presented in Section 5.3.3. An example generic method, toList, is defined in the

following code segment:

class Utils {

<X extends String> List<X> toList(X elem) {

List<X> newList = new LinkedList<X>;

newList.add(elem);

int numOfCharacters = elem.length();

System.out.println(numOfCharacters);

return newList;

}

boolean foo() {

String str = "a string";

List<String> list1 = this.<String>toList(str);

List<String> list2 = this.toList(str);

return list1.equals(list2);

}

}

Generic method toList is declared with a type parameter X. It takes in an ele-

ment of type X and returns a new instance of List<X> that only contains the input

element. The abbreviated type signature of toList without mentioning the name of

its value argument (elem) is <X extends String> (X)→ List<X>. To connect this no-

tation with that commonly used in programming language literature, type signatures

of generic methods can be written as universal types [53, Section 23], where type

parameters are universally quantified variables. The corresponding universal type of

toList is ∀X <: String.(X → List<X>). Java wildcards are modeled in VarJ as exis-

tential types rather than universal types. We explain in Section 5.3 why existential

types are a more appropriate model for Java wildcards than universal types.

Method type parameters can be referenced anywhere in the type signature of the

method (type bounds, return type, and value argument types) and in the body of

43

method. They can be declared with upper bounds. Because the upper bound of X

is String, any instance of X can invoke methods in the String class. Method toList

invokes method length that is defined in the String class to retrieve the number of

characters in the string bound to elem.

Invoking a generic method always requires specifying both type arguments and

value arguments either by the programmer or by the compiler. First, we define ter-

minology to clarify references to syntactic elements related to generic methods. Type

arguments/parameters are variables bound to types. Value arguments are bound

to values. Arguments in type signatures are called formal arguments. Arguments

in method invocations are called actual arguments. Consider the type signature

of toList and generic method invocation this.<String>toList(str) in the body of

method foo. In that invocation, the actual type argument String instantiates formal

type argument X. Similarly, the actual value argument str instantiates formal value

argument elem. We skip the qualifiers such as “formal” and “actual” when referring

to arguments when the desired qualifier is clear from the context.

In the method invocation, this.toList(str), an actual type argument is not

specified by the programmer. For such invocations, the compiler automatically infers

an actual type argument. This process is known as type inference. In Java, actual type

arguments are inferred by first using the types of actual value arguments [28, Section

15.12.2.7]. If there are remaining method type arguments that were not inferred

from the type of the actual value arguments, the context of the method invocation is

used to infer the remaining type arguments [28, Section 15.12.2.8].1 For invocation

this.toList(str), the javac compiler infers the missing type argument to be String

using the fact that the actual value argument str is of type String.

1One example context is that the method invocation may be the right-hand side of an assignment
expression. The type of the left-hand side of the assignment can be used to infer actual type
arguments.

44

The interaction between generic methods, type inference, Java wildcards, and vari-

ance raises complex issues that must be addressed to support definition-site variance

in Java. These issues are discussed later in this chapter.

5.2.1 Contrasting Use-Site Variance and Generic Methods

This section explains why generic method type parameters with upper type bounds

cannot emulate use-site variance. Use-site variance allows truly unknown types at

compile time. It enables greater abstraction on method type signatures than solely

introducing type variables with bounds. For example, suppose List is invariant.

It may seem that the method signature “(int) → List<? extends Animal>” can

always be replaced by generic method type signature “<Y extends Animal> (int)→

List<Y>”. A method of either of these types returns a List of some subtype of Animal.

However, the following method shows that those two signatures are not equivalent.

// This method typechecks/compiles

List<? extends Animal> createList(int num) {

if(num % 2 == 0) // if num is an even number

return new List<Dog>();

else // else num is an odd number

return new List<Cat>();

}

// This method does not type check/does not compile

<Y extends Animal> List<Y> createList2(int num) {

if(num % 2 == 0)

// next line does not type check because

// List<Dog> is not a subtype of List<Y>

return new List<Dog>();

else

// next line does not type check because

// List<Dog> is not a subtype of List<Y>

return new List<Cat>();

}

Method createList returns a List<Dog> if the input value argument num is even;

otherwise, it returns a List<Cat>. Since List is invariant, neither List<Dog> nor

List<Cat> is a subtype of List<Animal>. However, both List<Dog> and List<Cat>

45

are subtypes of List<? extends Animal>, which allows method createList to type

check.

Although methods createList and createList2 have the same method body (ex-

cept for comments), createList2 does not type check. In Java, a method body of a

generic method is type checked once and for all legal instantiations of the method’s

type parameters. This ensures that a method body is type safe for every instanti-

ation of the method’s type parameters that is within the upper bounds of the type

parameters. createList2 does not type check because a compiler cannot establish

that for every instantiation of type parameter Y that is a subtype of Animal, List<Y>

is a supertype of both List<Dog> and List<Cat>.

An invocation of createList2 would not type check even if only instantiated

method bodies are type checked. In C++ [37], uninstantiated bodies of generic

methods2 are compiled without type checking. Only instantiated methods resulting

from generic method invocations are type checked in C++. By the invariance of List,

no instantiation of List is a supertype of both List<Dog> and List<Cat>. Hence, no

instantiation of createList2 typechecks for the entire method body. Any invocation

of a C++ version of createList2 would not type check.

Without use-site variance, type arguments must always be specified statically or

at compile time in method invocations. Although type inference allows type ac-

tuals to be specified by the compiler rather than by the programmer, these types

must always be specified statically. This example shows that generic methods with

upper bounds on type parameters do not empower the expressiveness of wildcards.

It also highlights a key difference between universally-quantified type variables and

existentially-quantified type variables. Types abstracted by wildcards are existentially

quantified. Details of existential types and their correspondence with Java wildcards

2Generic methods are known as template methods in C++.

46

will be given next, in Section 5.3. For now, we just mention that existential type

variables are never instantiated at compile time. On the contrary, applying terms of

universal types such as generic methods requires instantiating universally-quantified

type variables (either manually or automatically, by the compiler) at compile time.3

5.3 Existential Types

Java wildcards are not merely use-site variance, but also include mechanisms in-

spired by existential typing mechanisms. This section explains these mechanisms and

motivates the usage of existential types in the VarJ calculus to model Java wildcards.

We will show that existential types model aspects of Java wildcards that cannot be

represented using VarLang types.

During the type checking phase of the compiler, Java wildcards are captured or

converted to fresh type variables; this process is known as capture conversion [28,

Section 5.1.10]. Each wildcard in the input program generates a distinct type variable.

For example, type Pair<?, ?> is capture converted to type Pair<Y, Z>, where Y and

Z are fresh and distinct type variables.

Wildcard types are modeled in the TameFJ calculus [12] as existential types. Type

variables resulting from capture conversion are modeled as existentially quantified

type variables. The type, Pair<?, ?>, is modeled in TameFJ as the existential type,

∃Y,Z.Pair<Y, Z>. Further details of how Java wildcards are translated to existential

types are in [12, Section 4]. The remainder of this section will motivate the usage of

existential types to model Java wildcards using the code example in Figure 5.1. A

more detailed introduction to existential types can be found in [30, Chapter 21].

3An encoding of existential types as universal types in an extension of the lambda calculus is
presented in [30, Chapter 21]. In that encoding, ∃(t.σ) = ∀(t′.∀(t.σ → t′) → t′), where t is a
type variable and σ is a type expression. In that encoding, the newly created type variable t′

is instantiated at compile time in an open expression. However, the existentially-quantified type
variable t is never instantiated at compile time or in the static semantics.

47

class Client

{

<X> Pair<X, X> make(List<X> l) { ... }

<X> Boolean compare(Pair<X, X> p) { ... }

<X> void exchangeFirsts(List<X> l1, List<X> l2) {

X tmp = l1.get(0); // get first element of l1

l1.set(0, l2.get(0)); // set l1’s first element to l2’s

l2.set(0, tmp); // set l2’s first element to l1’s

}

<X> void uselessExchange(List<X> l) {

exchangeFirsts(l, l);

}

void foo() {

Pair<?, ?> pair;

List<?> list;

compare(pair); // 1, error, does not type check/compile

compare(make(list)); // 2, OK, type checks/compiles

exchangeFirsts(list, list); // 3, error, does not type check

uselessExchange(list); // 4, OK, type checks/compiles

}

}

Figure 5.1. Example Java program that motivates the usage of existential types to
model Java wildcards. This program is based on an example from [12, Section 2.1].

48

5.3.1 Expressible But Not Denotable Types

Expressions can be assigned with types that are expressible but cannot be writ-

ten in Java’s syntax. The method invocation, make(list), from the code example

in Figure 5.1 (on the line labeled/containing “// 2”) returns a Pair of two elements

that are both of the same unknown type. This type can be modeled in TameFJ

as ∃X.Pair<X, X>. This type cannot be written by a programmer in Java’s syntax.

Each occurrence of a wildcard (?) in the syntax causes a fresh type variable to

be generated during capture conversion. Type Pair<?, ?> represents a pair of two

elements that can be of two distinct types. However, method compare requires a

pair where both of its elements are of the same type. The first method invocation,

compare(pair), does not type check, as a result. The second method invocation,

compare(make(list)), does type check because the capture converted type of expres-

sion make(list) is Pair<X, X>, where X is a fresh type variable. Hence, types such as

∃X.Pair<X, X> are needed to model types that can arise during type checking with

wildcards. VarLang does not support types that can model a pair of the same un-

known type. VarJ extends TameFJ and supports both definition-site variance and

existential types.

5.3.2 Scope of Wildcards

In Java, the types of two expressions never share a type variable resulting from

capture conversion. This holds even when both of the two expressions are syntactically

the same.

Consider method exchangeFirsts from Figure 5.1. It expects two lists that store

elements of the same type. It swaps the first elements from both of the lists with

each other. Each time a wildcard type is capture converted, the generated type vari-

ables are distinct from variables occurring in all other types that result from capture

conversion. The method invocation, exchangeFirsts(list, list), in Figure 5.1 does

49

not type check for that reason. Although both actual arguments are the same ex-

pression (list), the types assigned to the two occurrences of list are List<Y> and

List<Z>, respectively, where type variables Y and Z are distinct from each other and

distinct from all other type variables that occur in different types. As a result, the

Java compiler assumes that two lists of two different types were passed as arguments

in exchangeFirsts(list, list).

Rejecting this method call may seem too conservative because it seems to be safe

from runtime type errors. However, in Java the dynamic type of list may change

from updating the value that variable list is bound to. The previous dynamic type

may not be subtype-related with the new dynamic type. When a method call is

executed, the actual arguments of the method call are evaluated (from left to right in

Java) before executing the code of the method body. Variable list may initially be

set to new List<Dog>() and then set to new List<Cat>() before the method body of

exchangeFirsts is evaluated. For example, the following expression is legal in Java:

exchangeFirsts((list = new List<Dog>()), (list = new List<Cat>()))

In Java, an assignment (x = e) is an expression. The value returned by an assignment

is the value of the expression on the right-hand side. The type of an assigment is

the declared type of the variable on the left-hand side. The type of both actual

arguments is List<?>, the declared type of list. Although this example is contrived,

many programs implement threads [28, Chapter 17] that may modify shared memory.

The execution of exchangeFirsts(list, list) may be interrupted by a thread that

changes the value of list.

Therefore, evaluating exchangeFirsts(list, list) may reduce it to

exchangeFirsts(new List<Dog>(), new List<Cat>()). Since List is invariant, there

does not exists a type instantiation of List that is a supertype of both argument types,

50

List<Dog> and List<Cat>.4 A runtime type error can result if exchangeFirsts(list,

list) was permitted to execute. Passing a List<Dog> and a List<Cat> would add

a Dog to a List<Cat> and vice versa. We describe a type-safe way of passing two

occurrences of expression list indirectly to a call to exchangeFirsts in Section 5.3.3.

The scope of existential type variables is used to model that the types of two Java

expressions never share a type variable that resulted from a wildcard. An existential

type ∃∆.R in TameFJ consists of an environment ∆ and a body R. Existential type

variables are declared in the environment and are bound (are in scope) in the body,

R. Existential type variables are not global variables and are bound only within the

existential type that they are declared in. The grammar of existential types in VarJ

is given in Chapter 6 in Figure 6.1.

In TameFJ, in the method invocation, exchangeFirsts(list, list), both of the

actual arguments could have been assigned the type, ∃X.List<X>. However, the oc-

currences of X in the bodies of the existential types, ∃X.List<X> and ∃X.List<X>, refer

to two different binders or declarations of type variables. Type checking should not

depend on the specific names chosen for binders. For example, the type of the second

occurrence of list in exchangeFirsts(list, list) could have been either ∃X.List<X>

and ∃Y.List<Y>. Types ∃X.List<X> and ∃Y.List<Y> are alpha-equivalent [53, Section

5.3] because they only differ in the names of their binders. Many proofs of language

properties depend on the ability to swap syntactic terms that are alpha-equivalent

without invalidating a proof [64]. The type safety proofs for TameFJ and VarJ also

depend on this capability. The ability to swap alpha-equivalent terms is explained in

more detail in Section 10.2.5.

4Although List<?> is a supertype of both List<Dog> and List<Cat>, ‘?’ is not a type. Thus,
List<?> is not a type instantiation of List.

51

5.3.3 Wildcard Capture

Wildcard capture [28, Section 15.12.2.7] is the process of passing an unknown

type, hidden by a wildcard, as an actual type parameter in a method invocation.

Consider the method invocation, uselessExchange(list), from Figure 5.1. Although

a programmer may want to pass an object of type List<?> as a value argument to

method uselessExchange, the actual type parameter to pass for X cannot be man-

ually specified because the type hidden by ? cannot be named by the program-

mer. Specifically, a programmer cannot specify a type T such that the method in-

vocation, this.<T>uselessExchange(list), typechecks. However, method invocation

uselessExchange(list) type checks even though actual argument list is of type

List<?>. Passing an instance of List<?> typechecks because Java allows the compiler

to automatically generate a name for the unknown (capture converted) type and use

that name in a method invocation. VarJ models wildcard capture and its interac-

tion with definition-site variance. This interaction requires significant changes in our

formalism relative to TameFJ [12].

Recall that expression exchangeFirsts(list, list) does not type check. How-

ever, uselessExchange(list) seems to perform the same behavior as the former ex-

pression. The difference is that throughout the execution of the method body of

uselessExchange, the formal argument l is always bound to a single instantiation of

List. l can only be set to a different instance of List<X> within the method body.

Changing the value of list does not change the value of l because they are two

different references.

We conclude this section by showing how wildcard capture can simplify type

signatures of methods that perform type independent operations. [9, Chapter 5, Item

28] states the rule, “if a type parameter appears only once in a method declaration,

replace it with a wildcard.” Example code following this rule is below. Method

swapLastTwo swaps the order of the two elements at the top of a stack. Method call

52

swapLastTwoHelper(stack) typechecks because of wildcard capture. The signature of

swapLastTwo is arguably simpler than swapLastTwoHelper’s signature because invoking

swapLastTwo does not require a type argument.

public void swapLastTwo(Stack<?> stack) { swapLastTwoHelper(stack); }

private <E> void swapLastTwoHelper(Stack<E> stack) {

E elem1 = stack.pop();

E elem2 = stack.pop();

stack.push(elem2);

stack.push(elem1);

}

5.4 F-bounded polymorphism

Another language feature that significantly complicates variance reasonining is F-

bounded polymorphism [13]. An F-bound is a recursive bound in a subtype constraint

on a type parameter X, where a type bound, T, on X contains an occurrence of X.5

Consider the following definition:

interface Trouble<P extends List<P>> extends Iterator<P> {}

The upper bound of type parameter P is List<P>. Upper bound, List<P>, is an

(recursive) F-bound because it contains the type parameter, P, that it is restricting.

The type, Trouble<P>, extends Iterator<P>, which is assumed in the example to

be covariant (exporting a method “P next()”, per the Java library convention for

iterators). It would stand to reason that Trouble is also covariant: an object of type

Trouble<P> does precisely what an Iterator<P> object does, since it simply inherits

methods. Consider, however, the type, Trouble<? super A>. This is a contravariant

use of a covariant generic. According to our approach for combining variances, this

results in a bivariant type (due to the variance joining described in Section 3.2). For

5There are restrictions in Java for what an F-bound can be in [28, Section 4.4]. For example, a
type variable X cannot be bounded by just itself (i.e., the constraint, X extends X, is not allowed).

53

example, we can derive the following subtype relationship even though the types,

MyList and YourList, are not subtype-related.

Trouble<YourList> <: Trouble<Object> (by covariance assumption of Trouble)

<: Trouble<? super Object>

<: Trouble<? super MyList>

The problem, however, is that the bounds of type variables (List<P> in this case) are

preserved in the existential type representing a use of Trouble with wildcards. This

results in unsoundness because, in F-bounded polymorphism, the bound includes the

hidden type, allowing its recovery and use. We can cause a problem with the following

code (ArrayList is a standard implementation of the usual Java List interface, both

invariant types):6

class MyList extends ArrayList<MyList> { }

class YourList extends ArrayList<YourList> {

int i = 0;

public boolean add(YourList list)

{ System.out.println(list.i); return super.add(list); }

}

void foo(Trouble<? super MyList> itr) {

itr.next().add(new MyList());

}

void main() {

Trouble<YourList> preitr = ...;

foo(preitr);

}

Function foo typechecks because itr.next() is guaranteed to return an unknown

supertype, X, of MyList but also (due to the F-bound on Trouble) a subtype of

List<X>. Thus, X has a method add (from List) which accepts instances of X, and

thus also accepts instances of MyList (since X is a supertype of MyList).

6This example is originally due to Ross Tate.

54

The problem arises in the last line, foo(preitr). If Trouble<? super MyList> were

truly bivariant (as a contravariant use of a covariant generic), then that line would

type check, allowing the unsound addition of a MyList object to a list of YourLists.

Note that this example is not a counterexample to VarLang’s soundness (The-

orem 3) because Trouble is not covariant by the subsumption principle. For ex-

ample, it is not safe to assume Trouble<Dog> <: Trouble<Animal>. An instance of

Trouble<Animal> can return a List<Animal> using method next but a Trouble<Dog>

cannot. Invoking next() on an instance of Trouble<Dog> returns an instance of

List<Dog>, which is not a subtype of List<Animal>, by the invariance of List.

This example only shows that the joining of definition- and use-site variances

needs to be carefully restricted in the presence of F-bounded polymorphism. In

particular, variances of bounds cannot be ignored when an F-bound occurs within a

type expression rather than within a type definition. We discuss this issue in more

detail in Section 6.7.1.

55

CHAPTER 6

VARJ

We investigate extending Java with definition-site variance by developing the VarJ

calculus [2]. VarJ is a type system [53] that models a subset of Java that is extended

with definition-site variance. The definition of VarJ follows the standard approach to

defining a type system. In this approach, a set of inference rules and mathematical

functions are used to precisely state the semantics of the language. Such a rigorous

definition of a language facilitates mathematical proofs of properties over the lan-

guage. VarJ is defined with this approach. Using VarJ, we prove that our variance

reasoning is safe or prohibits runtime type errors from well-typed programs.

6.1 VarJ Syntax

VarJ is an extension of a past formalism, TameFJ by Cameron et al [12]. VarJ’s

syntax is found in Figure 6.1. A program that typechecks in TameFJ also typechecks

in VarJ. Significant differences are highlighted using shading. To improve readability,

some syntactic categories are overloaded with multiple meta-variables. Existential

types range over T, U, V, and S. Type variables range over X, Y, and Z. Bounds range

over B and A. Variances range over v and w. The bottom type, ⊥, is used only as a

lower bound.

We follow the syntactic conventions of TameFJ: all source-level type expressions

are written as existential types, with an empty range for non-wildcard Java type

uses and type variables written as ∃∅.X; substitution is performed as usual except

[T/X]∃∅.X = T; ? is a syntactic marker designating that a method type parameter

56

(i.e., for a polymorphic method) should be inferred. When a non-existential type R

is written in a context where an existential type is expected, R denotes ∃∅.R. For

example, List<X> denotes ∃∅.List<∃∅.X> in an appropriate context.

Class type parameters (X) now have definition-site variance annotations (v) and

lower bounds (BL). Method type variables now have lower bounds as well. When the

bounds of a type variable are skipped, the implicit lower and upper bounds are the

bottom type ⊥ and the top type ∃∅.Object, respectively. For example, ∃X.List<X>

denotes ∃X→ [⊥-∃∅.Object].List<X>. Also, when no type arguments are supplied in

a parameteric type the angle brackets can be skipped; e.g., Animal denotes Animal<>.

The auxiliary function fv(t) returns the set of free variables in term t; a term is

string in the grammar of any syntactic category of VarJ.

The remainder of this section focuses on semantic differences between VarJ and

TameFJ and new concepts from adding definition-site variance. Sections 6.2 and 6.3

formally present notions of the variance of a type expression and the variance of a

type position. Section 6.4 covers subtyping with definition-site and use-site variance

in VarJ. Section 6.5 discusses the updates made to allow safe interaction between

wildcard capture and variant types.

6.2 Variance of a Type

Before we embark on the specifics of the VarJ formalism, we examine the essence

of variance reasoning, i.e., how variances are computed in type expressions. For now,

consider the subtyping relation of our formalism as a black box—it will be defined in

Section 6.4. When is a type instantiation C<Exp1> a subtype of another instantiation

C<Exp2>? We answer a more general question using the predicate var(X; T), where X

is a type variable and T is a type expression. The definition of var in Section 4.2 is

defined only for VarLang types. We redefine var in this section over VarJ types. The

definition of var in this section is more general because it is defined over a richer set

57

Syntax:

e ::= x | e.f | e.<P>m(e) | new C<T>(e) expressions

s ::= new C<T>(s) values

v ::= + | − | ∗ | o variance

Q ::= class C< v X→ [BL -BU]> C N { T f; M } class declarations

M ::= <X→ [BL -BU]> T m(T x) { return e; } method declarations

N ::= C<T> non-variable types

R ::= N | X non-existential types

T ::= ∃∆.N | ∃∅.X existential types

B ::= T | ⊥ type bounds

P ::= T | ? method type parameter

∆ ::= X→ [BL-BU] type ranges

Γ ::= x : T var environments

X ::= . . . type vars

x ::= . . . expr vars

C ::= . . . class names

Figure 6.1. VarJ Syntax

58

of types, which include existential types. Furthermore, this section provides insight

into how to define var over types with syntactic forms that are not in the grammar

of VarJ.

The goal of var is to determine the following: Given a type variable X and a

type expression T that can contain X, what is the subtyping relationship between

different “instantiations” of T with respect to (wrt) X, where an instantiation of T

wrt to X is a substitution for X in T. For example, we want var(X; T) = + to imply

[U/X]T <: [U′/X]T, if U <: U′.

To define var, we use predicate v(T; T′) as a notational shorthand, denoting the

kind of subtype relation between T and T′:

• +(T; T′) ≡ T <: T′ • –(T; T′) ≡ T′ <: T

• o(T; T′) ≡ +(T; T′) ∧ -(T; T′) • *(T; T′) ≡ true

Note that, by the variance lattice (in Figure 2.1), we have

v ≤ w =⇒
[
v(T; T′) =⇒ w(T; T′)

]
(6.1)

In general, we want for var the following property, which is a generalization of the

subtype lifting lemma of Emir et al.’s modeling of definition-site variance [24]:

var(X; T) = v =⇒
[
v(U; U′) =⇒ [U/X]T <: [U′/X]T

]
(6.2)

By (6.1), (6.2) entails a more general implication:

v ≤ var(X; T) =⇒
[
v(U; U′) =⇒ [U/X]T <: [U′/X]T

]
(6.3)

We assume there is a usual class table CT that maps class identifiers C to their

definition (i.e., CT (C) = class C<vX→ [BL-BU]> C N { . . . }). Similarly, we define a

59

variance table V T that maps class identifiers to their type parameters with their def-

site variances. For example, assuming the class table mapping above, V T (C) = vX.

V T is overloaded to take an extra index parameter i to the ith def-site variance

annotation; e.g, if V T (C) = vX, then V T (C, i) = vi.

Variance of Types and Ranges: var(X;φ), where φ ::= B | R | ∆
var(X; X) = + (Var-XX)

var(X; Y) = ∗, if X 6= Y (Var-XY)

var(X; C<T>) =
dn

i=1

(
vi ⊗ var(X; Ti)

)
, if V T (C) = vX (Var-N)

var(X;⊥) = ∗ (Var-B)

var(X;∃∆.R) = var(X; ∆) u var(X; R), if X /∈ dom(∆) (Var-T)

var(X; Y→ [BL-BU]) =
dn

i=1

((
−⊗ var(X; BLi)

)
u
(
+⊗ var(X; BUi)

))
(Var-R)[

var(X;φ) = v
]
≡
[
∀i, var(Xi;φ) = vi

]
, where φ ::= B | R | ∆ (Var-Seq)

Figure 6.2. Variance of types and ranges

The expression var(X; B) computes the variance of type variable X in type ex-

pression B. Figure 6.2 contains var ’s definition. var ’s type input is overloaded for

non-existential types (R) and type ranges (∆). (var(X;φ) is further overloaded in the

expected way for computing variances for sequences of type variables.)

The var relation is used in our type system to determine which variance is ap-

propriate for each type expression. Eventually our proof connects it to the subtype

relation, in Lemma 1. (Proofs of all key lemmas can be found in Appendix B.)

Lemma 1 (Subtype Lifting Lemma). If (a) v ≤ var(X; B) and (b) ∆ ` v(T; U) then

[T/X]B <: [U/X]B.

We provide some intuition on the soundness of var ’s definition. One “base case”

of var ’s definition is the Var-XX rule. To see why it returns +, note that the desired

implication from the subtype lifting lemma holds for this case: if +(T; U), which is

equivalent to T <: U, then [T/X]X = T <: U = [U/X]X. The Var-N rule computes

60

the variance in a non-variable type using the ⊗ operator, which determines how

variances compose, as described in Section 3.1. Var-R computes the variance of a

type variable in a range. Computing the variance of ranges is necessary for computing

the variance of constraints from type bounds on type parameters, which occur in

existential types and method signatures. The domains of ranges are ignored by Var-

R. A range becomes more “specialized” as the bounds get “squeezed”. Informally,

a range [BL − BU] is a subrange of range [AL − AU] if AL <: BL and BU <: AU . The

variance of the lower bound is transformed by contravariance to “reverse” the subtype

relation, since we want the lower bound in the subrange to be a supertype of the lower

bound in the superrange.1 The subtype lifting lemma can be used to entail subrange

relationships:

var(X; Y→ [BL-BU]) = v and v(T; U)

=⇒ [U/X]BL <: [T/X]BL and [T/X]BU <: [U/X]BU

The variance of an existential type variable is just the meet of the variances of

its range (∆) and its body (R). The Var-T rule has the premise “X /∈ dom(∆)”

to follow Barendregt’s variable convention [64], as in the TameFJ formalism. (var

is undefined when this premise is not satisfied.) This convention is followed in the

definitions of TameFJ and VarJ. Following this convention substantially reduces the

number of places requiring alpha-conversion to be applied and allows for more elegant

proofs. Furthermore, this convention ensures that predicates defined by the type

system’s rules are equivariant (respect alpha-renaming). In other words, changing the

name of a bound variable does not invalidate any derived judgment. For example,

this property holds for var(X; T) because we can rename binders to fresh names in

existential types in T without changing the variance of X in T. Without the premise

1Intuitively, the upper/lower bounds are in co-/contravariant positions, respectively.

61

of rule Var-T, this property would no longer hold. So that the important premises

are clearer, in the remaining rules we skip such “side-conditions” in the text and

just mention that the premises for following the variable convention are implicit.

Barendregt’s variable convention is discussed further in Section 10.2.5.

Contrasting with var ’s definition in Section 4.2, var ’s definition in Figure 6.2 does

not use that the lattice join operator t. Computing variance using the join operator

is not safe in VarJ because F-bounded type variables can be declared within type

expressions. We discuss this issue further in Section 6.7.1.

6.3 Variance of a Position

Satisfying the subsumption principle with variant subtyping requires assigning

variances to positions in class definitions where types can occur. For example, return

types are assumed to be in covariant positions while argument types are assumed

to be in contravariant positions. These assumed variances of positions are used to

typecheck class definitions and their def-site variance annotations.

The expressions “v ≤ var(X; B)” and “− ⊗ v” are used frequently in the VarJ

formalism. To relate our notation to previous work, we define the following:

[
vX ` B mono

]
≡
[
v ≤ var(X; B)

]
(6.4)

[
¬v
]

=
[
−⊗ v

]
(6.5)

A “monotonicity” judgment of the syntactic form “vX ` T mono” appears origi-

nally in Emir et al.’s definition-site variance treatment [24] and later in Kennedy and

Pierce [39] as “vX ` T ok”. The semantics of these judgments in the aforementioned

sources are similar to its definition here but differs in that their work had no function

similar to var , no ⊗ operator, nor a variance lattice. The negation operator ¬ also

62

appears in [24] and [39], and it is used to transform a variance by contravariance. Us-

ing the implications in Section 6.2, it is easy to show the following properties, which

are important for type checking class definitions:

w = ¬v =⇒
[
v(B, B′) ⇐⇒ w(B′, B)

]
(6.6)

vX ` B mono =⇒
[
v(T, U) =⇒ [T/X]B <: [U/X]B

]
(6.7)

¬vX ` B mono =⇒
[
v(T, U) =⇒ [U/X]B <: [T/X]B

]
(6.8)

Figure 6.3 contains rules for checking class and method definitions and the defini-

tion of the override predicate. Premises related to type checking with definition-site

variance are highlighted. Auxiliarly lookup functions, such as mtype, are used by the

override definition and are used to compute the types of members (fields and meth-

ods) in class definitions. Their definitions are in Figure 6.4. These lookup functions

take in non-variable types (N) instead of existential types. In the expression typing

rules (in Figure 6.7), existential types are implicitly “unpacked” to non-variable types

to type some expressions such as a field access. The process for packing and unpack-

ing types is similar to the process performed in the TameFJ formalism. Section 6.5

has a brief overview of this process and an example type derivation.

The definition-site subtyping relation judgment ∆ ` N ≺: N′ is defined over non-

variable types and considers definition-site annotations when concluding subtype re-

lationships. For example, V T (C) = +X =⇒ ∆ ` C<∃∅.Dog> ≺: C<∃∅.Animal>,

assuming ∆ ` ∃∅.Dog <: ∃∅.Animal. This relation is defined in Figure 6.6.

The motivation for the assumed variances of positions is to ensure the subsumption

principle holds for the subtyping hierarchy. Informally, if T <: U, then a value of type

T may be provided whenever a value of type U is required. In the case of VarJ, the

63

Class and Method Typing:

vX ` N, T mono ∆ = X→ [BL-BU]

∅ ` ∆ OK ∆ ` N, T OK `M OK in C

` class C<vX→ [BL-BU]> C N { T f; M } OK
(W-Cls)

CT (C) = class C<vX→ [BL-BU]> C N { . . . }
∆ = X→ [BL-BU] ∆ ` ∆′ OK ∆,∆′ ` T, T OK

override(m; N; <∆′> (T)→ T) ¬vX ` T,∆′ mono vX ` T mono

∆,∆′; x : T, this : ∃∅.C<X> ` e : T | ∅
` <∆′> T m(T x) { return e; } OK in C

(W-Meth)

mtype(m; N) = <∆> (T)→ T

override(m; N; <∆> (T)→ T)
(Over-Def)

mtype(m; N) is undefined

override(m; N; <∆> (T)→ T)
(Over-Undef)

Figure 6.3. Class and Method Typing

Lookup Functions:
Shared premise for lookup rules except F-Obj:

CT (C) = class C<vX→ [BL-BU]> C N { S f; M }

fields(Object) = ∅ (F-Obj)

fields(C) = g, f, if N = D<U> and fields(D) = g (F-Super)

ftype(f; C<T>) = ftype(f; [T/X]N), if f /∈ f (FT-Super)

ftype(fi; C<T>) = [T/X]Si, (FT-Class)

mtype(m; C<T>) = mtype(m; [T/X]N), if m /∈M (MT-Super)

mtype(m; C<T>) = [T/X](<∆> (U)→ U),
if <∆> U m(U x) { return e; } ∈M (MT-Class)

mbody(m; C<T>) = mbody(m; [T/X]N), if m /∈M (MB-Super)

mbody(m; C<T>) = 〈x.[T/X]e〉,
if <∆> U m(U x) { return e; } ∈M (MB-Class)

Figure 6.4. Lookup Functions

64

Wellformed Ranges: ∆ ` ∆ OK

∆ ` ∅ OK
(W-Rng-empty)

X /∈ dom(∆) ∆, X→ [BL-BU],∆
′ ` BL, BU OK

∆ ` ubound∆(BL) @: ubound∆(BU)
∆ ` BL <: BU ∆, X→ [BL-BU] ` ∆′ OK

∆ ` X→ [BL-BU],∆
′ OK

(W-Rng)

Non-Variable Upper Bound: ubound∆(B)

ubound∆(B) =

{
ubound∆(BU), if B = ∃∅.X, where ∆(X) = [BL − BU]

B, if B = ∃∆′.N

Wellformed Types: ∆ ` φ OK, where φ ::= B | P | R

∆ ` Object<> OK
(W-Obj)

X ∈ dom(∆)

∆ ` X OK
(W-X)

∆ ` ⊥ OK
(W-B)

∆ ` ? OK
(W-I)

class C<vX→ [BL-BU]> C N { . . . }
∆ ` [T/X]BL <: T ∆ ` T <: [T/X]BU

∆ ` T OK

∆ ` C<T> OK
(W-N)

∆ ` ∆′ OK ∆,∆′ ` R OK

∆ ` ∃∆′.R OK
(W-T)

Wellformed Expression Variable Environments ∆ ` Γ OK

∆ ` ∅ OK
(W-Env-Empty)

x /∈ dom(Γ) ∆ ` T OK ∆ ` Γ OK

∆ ` Γ, x : T OK
(W-Env)

Figure 6.5. Wellformedness Judgments

65

Definition-Site Subtyping: R ≺: R

class C<vX→ [BL-BU]> C N { . . . }
C 6= D ∆ ` [T/X]N ≺: D<U>

∆ ` C<T> ≺: D<U>
(SD-Super)

V T (C) = vX

∆ ` v(T, U)

∆ ` C<T> ≺: C<U>
(SD-Var)

∆ ` X ≺: X
(SD-X)

Existential Subtyping: ∆ ` B @: B

∆,∆′ ` N ≺: N′

∆ ` ∃∆′.N @: ∃∆′.N′
(SE-SD)

∆ ` B @: B
(SE-Refl)

∆ ` B @: B′ ∆ ` B′ @: B′′

∆ ` B @: B′′

(SE-Tran)

∆ ` ⊥ @: B
(SE-Bot)

dom(∆′) ∩ fv(∃X→ [BL-BU].N) = ∅ fv(T) ⊆ dom(∆,∆′)

∆,∆′ ` [T/X]BL <: T ∆,∆′ ` T <: [T/X]BU

∆ ` ∃∆′.[T/X]N @: ∃X→ [BL-BU].N
(SE-Pack)

Subtyping: ∆ ` B <: B

∆ ` B @: B′

∆ ` B <: B′

(ST-SE)

∆ ` B <: B′ ∆ ` B′ <: B′′

∆ ` B <: B′′

(ST-Tran)

∆(X) = [BL − BU]

∆ ` BL <: ∃∅.X
(ST-Lbound)

∆ ` ∃∅.X <: BU
(ST-Ubound)

Figure 6.6. Subtyping Relations

subsumption principle is established by showing appropriate subtype relationships

between types of members from class definitions. Lemma 2 states a goal subsumption

property, which is to have the type of field f of the supertype N′ become a more specific

type for the subtype N. Although inherited fields syntactically have the same type as in

the superclass definition, definition-site subtyping allows fields to have more specific

types in the subtype. Lemma 3 states the goal subsumption property for types in

method signatures; the sixth conclusion of this lemma holds because of the override

predicate.

66

Lemma 2 (Subtyping Specializes Field Type). If (a) ` class C<vX→ [. . .]> C

N . . . OK and (b) ∆ ` C<T> ≺: N′ and (c) ftype(f; N′) = T, then ∆ ` ftype(f; C<T>) <: T.2

Lemma 3 (Subtyping Specializes Method Type). If (a) ` class C<vX→ [. . .]> C

N . . . OK and (b) ∆ ` C<T> ≺: N′ and (c) mtype(m; N′) = <Y→ [BL-BU]> (U) → U,

then: (1) mtype(m; C<T>) = <Y→ [AL-AU]> (V) → V, (2) ∆ ` V <: U, (3) ∆ ` U <: V,

(4) ∆ ` AL <: BL, (5) ∆ ` BU <: AU , and (6) var(Y; U) = var(Y; V).

To satisfy the two lemmas above, we make assumptions about the variance of the

positions that types can occur in. To preserve the subtype relationship order of a type

in a member signature, we assume the type occurs in a covariant position (i.e., the

subtype needs to have a more specific type appear in such a position). To reverse the

subtype relationship order of a type in a member signature, we assume the type occurs

in a contravariant position. The assumptions about the variance of the positions are

reflected in the mono judgments in the W-Cls and W-Meth rules for checking class

and method definitions. By (6.7), not negating the def-site variance annotations,

v, in the judgment “vX ` T mono” reflects that T is assumed to be in a covariant

position. Since covariance, +, is the identity element for the ⊗ operator (+⊗ v = v),

the variances v do not need to be transformed by +. By (6.8), negating the def-site

variance annotations in the judgment “¬vX ` T mono” reflects that T is assumed to

be in a contravariant position. We need to reverse the subtype relationship order

for argument types and ranges in method type signatures. Negating the variance

annotations for the argument types ensures the argument types are more general

supertypes for the subtype.3

2If field assignments were allowed, then field types would be in both co- and contravariant posi-
tions, and both ftype(f;C<T>) and ftype(f;N′) would be subtypes of each other. This is explained
further in Section 7.3.

3Bounds on class type parameters may make unrestricted use of type parameters by similar
reasoning as in [24, p.7]. Once an object is created, they are forgotten.

67

Negating the range of a method type signature ensures the range is wider for

the subtype. For code examples motivating why ranges need to be widened for the

subtype, see Section 2.4 of [24]. More generally, if (1) e.<T>m() typechecks implying

the type actual T is within the type bounds for m’s type argument and (2) typeof(e′) <:

typeof(e), then e′.<T>m() should type check as well even if m is overridden in the

subclass. Hence, the subtype’s version of m should accept a superset/wider range of

types than accepted by the supertype’s version of m.

6.4 Subtyping

Subtyping in VarJ is defined similarly to TameFJ. Figure 6.6 contains the subtyp-

ing rules. There are three levels of subtyping in VarJ, as in TameFJ. The first level of

subtyping in TameFJ, the subclass relation, has been replaced with the definition-site

subtyping relation ≺: defined on non-existential types. Def-site subtyping is defined

by the SD-* rules, which are similar to the subtyping rules from [39]. Like the subtype

relation from [39], ≺: is defined by syntax-directed rules4 and shares the reflexive and

transitive properties by similar reasoning as in [39]. The ≺: judgment requires a typ-

ing context to check subtyping relationships between pairs of type actuals as done in

the SD-Var rule.

The existential subtyping relation @: is defined by the SE-* rules and is similar to

the “Extended subclasses” relation in TameFJ. The XS-Env rule from TameFJ was

renamed to SE-Pack; it is the only subtyping rule that can pack (and actually also

unpack) types into existential type variables. The XS-Sub-Class rule was not only

renamed to SE-SD but also had its premise updated to use def-site subtyping. SE-SD

allows def-site subtyping to be applied to both type variables in the type context ∆

4The syntax-directed nature of these rules does not ensure that an algorithmic test of ≺: is
straightforward, because the premise of rule SD-Var appeals to the definition of the full <: relation
(hidden inside the v shorthand).

68

and existential type variables in ∆′. As a result, a type packed into an existential

type variable may not be in the range of the variable. For example, if Iterator is

covariant in its type parameter (V T (Iterator) = +X), then the following subtype

relationship is derivable:

∃∅.Iterator<PrettyDog> <: ∃∅.Iterator<Dog> <: ∃Y→ [Dog-Animal].Iterator<Y>

Subtyping between two types implies the subsumption principle between the types.

Since Iterator<Dog> can be packed into ∃X→ [Dog-Animal].Iterator<X>

and Iterator<PrettyDog> <: Iterator<Dog>, it must be the case that

Iterator<PrettyDog> can also be packed into ∃X→ [Dog-Animal].Iterator<X>. This

intuition is formalized in Lemma 4, which is similar to Lemma 35 from TameFJ, and

establishes a relationship between existential subtyping and def-site subtyping.

Lemma 4 (Existential subtyping to def-site subtyping). If (a) ∆ ` ∃∆′.R′ @:

∃X→ [BL-BU].R and (b) ∅ ` ∆ OK, then there exists T such that: (1) ∆,∆′ `

R′ ≺: [T/X]R and (2) ∆,∆′ ` [T/X]BL <: T and (3) ∆,∆′ ` T <: [T/X]BU and (4)

fv(T) ⊆ dom(∆,∆′).

Existential subtyping does not conclude subtype relationships for type variables

except for the reflexive case using SE-Refl. The (all) subtyping relation <: allows

non-reflexive subtype relationships with type variables by considering their bounds

in the typing context. Since T or U may be type variables in a subtype relationship

T <: U, we want a stronger relationship between the non-variable upper bounds of T

and U. Lemma 5 formalizes this notion and is similar to lemma 17 from TameFJ. The

non-variable upper bound of a type T is ubound∆(T), defined in Figure 6.5.

Lemma 5 (Subtyping to existential subtyping). If (a) ∆ ` T <: T′ and (b) ∅ ` ∆ OK

then ∆ ` ubound∆(T) @: ubound∆(T′).

69

6.5 Typing and Wildcard Capture

The expression typing rules in VarJ are mostly the same as in TameFJ and are

given in Figure 6.7. Unlike TameFJ, VarJ allows method signatures to have lower

bounds. The sift function is needed for safe wildcard capture and is applied in the

T-Invk rule for typing method invocations. The definition of sift required updating

because of interaction with variant types. First, we give a brief overview of expression

typing; see [12] for more thorough coverage.

6.5.1 Expression Typing

Consider the Java segment below. It typechecks because expression box.elem is

typed as String. The type of box.elem is the same as the type actual passed to the Box

type constructor. In this case, the type actual is “? extends String”, which refers to

some unknown subtype of String. To type box.elem with some known/named type,

the most specific named type that can be assigned to box.elem is chosen, which is

String.

class Box<E> { E elem; Box(E elem) { this.elem = elem; } }

Box<? extends String> box = ...

box.elem.charAt(0);

We explain this type derivation through the formal calculus. Types hidden by

wildcards such as “? extends String” are “captured” as existential type variables.

The type, Box<? extends String>, is modeled in VarJ by ∃X → [⊥-String].Box<X>.

Expression typing judgments have the form ∆; Γ ` e : T | ∆′. The second type

variable environment ∆′ is the guard of the judgment. It is used to keep track of type

variables that have been unpacked from existential types during type checking. Vari-

ables in dom(∆′) may occur free in T and model hidden types. To type an expression

without exposed (free) hidden types (existential type variables), the T-Subs rule is ap-

plied to find a suitable type without free existential type variables. The example typ-

70

Expression Typing: ∆; Γ ` e : T | ∆

∆; Γ ` x : Γ(x) | ∅
(T-Var)

∆ ` C<T> OK fields(C) = f

ftype(f, C<T>) = U

∆; Γ ` e : U | ∅
∆; Γ ` new C<T>(e) : ∃∅.C<T> | ∅

(T-New)

∆; Γ ` e : ∃∆′.N | ∅
ftype(f; N) = T

∆; Γ ` e.f : T | ∆′
(T-Field)

∆; Γ ` e : U | ∆′
∆,∆′ ` U <: T

∆ ` ∆′ OK ∆ ` T OK

∆; Γ ` e : T | ∅
(T-Subs)

∆; Γ ` e : ∃∆′.N | ∅ mtype(m; N) = <Y→ [BL-BU]> (U)→ U

∆ ` P OK ∆; Γ ` e : ∃∆.R | ∅
sift(R; U; Y) = (R′; U′) match(R′; U′; P; Y; T)

∆′′ = ∆,∆′,∆ ∆′′ ` ∃∅.R <: [T/Y]U

∆′′ ` [T/Y]BL <: T ∆′′ ` T <: [T/Y]BU

∆; Γ ` e.<P>m(e) : [T/Y]U | ∆′,∆
(T-Invk)

Match:
∀j, Pj = ? =⇒ Yj ∈ fv(R′) ∀i, Pi 6= ? =⇒ Ti = Pi

∅ ` R ≺: [T/Y, T′/X]R′

dom(∆) = X fv(T, T′) ∩ Y, X = ∅
match(R;∃∆.R′; P; Y; T)

(Match)

Sift: sift(R; U; Y) = (R′; U′)

sift(∅; ∅; Y) = (∅; ∅)
(Sift-Empty)

Y ∩ fv(U) = X var(X; U) = o

sift(R; U; Y) = (R′; U′)

sift((R, R); (U, U); Y) = ((R, R′); (U, U′))
(Sift-Add)

Y ∩ fv(U) = X var(Xj; U) 6= o, for some Xj ∈ X

sift(R; U; Y) = (R′; U′)

sift((R, R); (U, U); Y) = (R′; U′)
(Sift-Skip)

Figure 6.7. Expression Typing and Auxiliary Functions For Wildcard Capture

71

ing derivation below illustrates this process on typing the “box.elem” expression from

the previous code segment, where we assume Γ = box : ∃X→ [⊥-String].Box<X>.

∅; Γ ` box : ∃X→ [⊥-String].Box<X> | ∅

ftype(elem; Box<X>) = X

∅; Γ ` box.elem : X | X→ [⊥-String]

(T-Field)

∅, X→ [⊥-String] ` X <: String

∅ ` X→ [⊥-String] OK

∅ ` String OK

∅; Γ ` box.elem : String | ∅

(T-Subs)

(6.9)

6.5.2 Matching for Wildcard Capture

The T-Invk rule typechecks a method invocation and uses match to perform wild-

card capture. The definition of match is updated to use the definition-site subtyping

relation (≺:). Ignoring return types, consider a polymorphic method declared with

type <Y>m(U) and called with types <P>m(∃∆.R). The match function is used to infer

actual type arguments for method invocations using the actual value arguments. The

parameters of match(R; U; P; Y; T) and their expected conditions are:

1. The bodies of the actual value argument types of a method invocation (R).

2. The formal value argument types of a method (U).

3. The specified type actuals of a method invocation (P).

4. The formal type arguments of a method (Y).

5. The inferred type actuals of a method invocation (T).

72

We briefly explain an example typing derivation where wildcard capture is per-

formed. More detailed coverage is given in [12, Section 3.4]. We type the method in-

vocation, uselessExchange(list), from the code example in Figure 5.1 in Section 5.3.

To explain the type derivation using the VarJ calculus, we translate syntactic elements

from the code example to their corresponding syntax in VarJ. For example, the local

variable declaration, “List<?> list;”, translates to “∃Y.List<Y> list;”. Method in-

vocation uselessExchange(list) translates to this.<?>uselessExchange(list). The

marker ? in the position of an actual type argument signals that an actual type argu-

ment should be inferred at that position. The inferred type argument will be passed

to the formal type argument X of method uselessExchange. To derive the type of

invocation this.<?>uselessExchange(list), we list the following judgments that rule

T-Invk will be applied to. First, let Γ be the expression variable context for the typ-

ing of that expression. For example, the domain of Γ includes the this reference,

so Γ(this) = ∃∅.Client<>. The other map entries in Γ can easily be determined by

inspecting the code example. In the judgments below, we highlight the existentially

quantified type variable when it occurs free in a type expression.

1. ∅; Γ ` this : ∃∅.Client<> | ∅, since Γ(this) = ∃∅.Client<>.

2. mtype(uselessExchange; Client<>) = <X> (∃∅.List<X>)→ void.

3. ∅ ` ? OK, by W-I in Figure 6.5.

4. ∅; Γ ` list : ∃Y.List<Y> | ∅, since Γ(list) = ∃Y.List<Y>.

5. sift(List< Y >;∃∅.List<X>; X) = (List< Y >;∃∅.List<X>). The sift function is

used to filter formal method value argument types that should not be instanti-

ated with inferred actual argument types. No such type is in this example. sift

is explained further in Section 6.5.3.

73

6. match(List< Y >;∃∅.List<X>; ?; X; Y). This holds because there exists a type T

such that replacing the method’s formal type argument X with T in the body of

the formal value argument type List<X> makes it a supertype of the body of

the actual value argument type List<Y>. In this case, T = Y and List<Y> ≺:

[Y/X] List<X> = List<Y>.

7. ∅ ` ∃∅.List< Y > <: [Y /X]∃∅.List<X> = ∃∅.List< Y >

Applying rule T-Invk to the judgments listed above gives the following:5

∅; Γ ` this.<?>uselessExchange(list) : void | Y→ [⊥-Object] (6.10)

The existentially quantified type variable, Y, in the type of list escapes to the

guard of the typing judgment 6.10 in case Y occurred free in the type of the method

invocation. Rule T-Subs can be applied in similar fashion to that in typing deriva-

tion 6.9 to type the method invocation with an empty guard. Typing with an empty

guard ensures that no existential type variable occurs free in the type of an expression.

Figure 6.8 contains the reduction rules for performing runtime evaluation. The

R-Invk rule also uses match to compute inferred type actuals because some of the

specified type actuals (P) may be the type inference marker ?. Since each occurrence

of the ? marker may refer to different inferred types, match is needed to compute the

concrete types to substitute for the formal type arguments’ (Y) occurrences in the

method body.

6.5.3 Sifting for Wildcard Capture

To preserve the type of a method invocation during execution, we want inferred

type arguments to remain the same throughout execution. Type arguments are in-

5Recall that the implicit range of Y in type ∃Y.List<Y> is [⊥-Object].

74

Computation Rules: e 7→ e

fields(C) = f

new C<T>(v).fi 7→ vi
(R-Field)

v = new N(v′) v = new N(v′′) mbody(m; N) = 〈x.e0〉
mtype(m; N) = <Y→ [BL-BU]> (U)→ U

sift(N; U; Y) = (N′; U′) match(N′; U′; P; Y; T)

v.<P>m(v) 7→ [v/x, v/this, T/Y]e0

(R-Invk)

Congruence Rules: e 7→ e

e 7→ e′

e.f 7→ e′.f
(RC-Field)

ei 7→ e′i

new C<T>(..ei..) 7→ new C<T>(..e′i..)
(RC-New-Arg)

e 7→ e′

e.<P>m(e) 7→ e′.<P>m(e)
(RC-Inv-Recv)

ei 7→ e′i

e.<P>m(..ei..) 7→ e.<P>m(..e′i..)
(RC-Inv-Arg)

Figure 6.8. Reduction Rules

75

ferred from actual value arguments. Recall that the dynamic type of a value argument

may be a more specific subtype of the argument’s static type. Thus, the dynamic

type of an argument may cause a different type to be inferred than using the static

type of an argument. This occurs when a formal type argument occurs in a position

that allows variant subtyping. As a result, not all formal type argument are allowed

to be bound to inferred type arguments. In particular, if the variance of a formal

type argument Y is greater than invariance in the type of a method’s formal value

argument, then Y cannot be bound to an inferred type argument.

The sift function is used in VarJ and TameFJ to filter inputs passed to match

(in the T-Invk and R-Invk rules). The goal of sift is to only allow type inference for

formal type arguments that occur at most invariantly in the types of formal value

arguments “fixed” or invariant positions. As a result, inferred type arguments for

a method invocation do not change throughout execution. Without applying sift,

counter examples to the subject reduction (type preservation) theorem can result.

First, note that the following two judgments are derivable.

1. match(Dog;∃∅.Y; ?; Y; Dog) because Dog ≺: [Dog/Y]Y = Dog. The other premises

of match are easy to verify.

2. match(Dog;∃∅.Y; ?; Y; Animal) because Dog ≺: [Animal/Y]Y = Animal.

Assume List is invariant and consider the following method definition and evalu-

ation step of a method invocation

<X> List<X> createList(X arg) { return new List<X>(); }

createList<?>(new Dog()) : List<Animal>

7→ new List<Dog>() : List<Dog>

76

The expression, createList<?>(new Dog()), can be typed with List<Animal> be-

cause the actual value argument new Dog() has type Animal. Hence, the inferred type

actual used for typing the expression can be Animal, which implies that the type

of createList<?>(new Dog()) is List<Animal>. However, the inferred type used for

typing the method invocation is not required to be the same inferred type, computed

in the R-Invk rule, that is substituted into the method body. Without sift, the above

evaluation step is possible, which contradicts the subject reduction theorem, since,

by the invariance of List, new List<Dog>() cannot be typed with List<Animal>.

Specifically, we want match to be a function over the filtered inputs from sift

and the following property, similar to lemma 37 from [12]. This lemma states that

the ability to perform wildcard capture is preserved as actual value arguments are

evaluated to concrete values.

Lemma 6 (Subtyping Preserves matching (arguments)). If (a) ∆ ` ∃∆1.R1 @: ∃∆2.R2

and (b) match(sift(R2; U; Y); P; Y; T) and (c) ∆2 = Z→ [BL-BU] and (d) fv(U) ∩ Z = ∅

and (e) ∅ ` ∆ OK and (f) ∆ ` ∃∆1.R1 OK and (g) ∆ ` P OK, then there exists U′

such that: (1) match(sift(R1; U; Y); P; Y; [U′/Z]T) and (2) ∆,∆′ ` [U′/Z]BL <: U′ and (3)

∆,∆′ ` U′ <: [U′/Z]BU and (4) R1 ≺: [U′/Z]R2 (5) fv(U′) ⊆ dom(∆,∆′).

In TameFJ, sift filters out a pair of a type actual body R and a formal type U,

if U = ∃∅.X and X is one of the formal type arguments (Y). Due to sift, the two

match judgments above could never be derived in TameFJ. Moreover, TameFJ allows

an existential type variable to be passed as parameter for a formal type variable

argument only if the formal type variable is used as a type parameter. Since every

type constructor in TameFJ is assumed to be invariant, every type variable used for

inference is in an invariant position. This no longer holds in VarJ with variant type

constructors. If we assume Iterator is covariant, a counter example similar to the

previous one can be produced with the following method:

<X> List<X> createList2(Iterator<X> arg) { return new List<X>(); }

77

Hence, we update the definition of sift to use var to check if a method type pa-

rameter occurs at most invariantly. This restriction ensures that instantiations of the

type parameter from type inference do not vary during execution. We find that pro-

hibiting wildcard capture in variant positions is not practically restrictive. A wildcard

type for a variant type typically has an equivalent non-wildcard type. Iterator<?>

is equivalent to Iterator<Object> by covariance of Iterator. BiGeneric<?> is equiv-

alent to BiGeneric<T>, for any T, if BiGeneric is bivariant. In such cases, the need

for wildcard capture is eliminated because the required type actuals to specify in a

method call can be named and written by the programmer. The VarJ grammar does

not allow the bottom type ⊥ to be specified as a type actual. However, we have not

found any practical need for wildcard capture with contravariant types.

6.6 Type Soundness

We prove type soundness for VarJ by proving the progress and subject reduction

theorems below. As in TameFJ, a non-empty guard is required in the statement of

the progress theorem when applying the inductive hypothesis in the proof for the case

when the T-Subs rule is applied.

Theorem 1 (Progress). For any ∆, e, T, if ∅; ∅ ` e : T | ∆, then either e 7→ e′ or

there exists a v such that e = v.

Theorem 2 (Subject Reduction). For any e, e′, T, if ∅; ∅ ` e : T | ∅ and e 7→ e′,

then ∅; ∅ ` e′ : T | ∅.

The key difficulty in proving these theorems can be captured by a small number of

key lemmas whose proofs are substantially affected by variance reasoning. Lemma 7 is

probably the main one, which relates subtyping and wildcard capture, and is similar

to lemma 36 from [12]. It states that the method receiver’s ability to perform wildcard

capture is preserved in subtypes with respect to the method receiver. It shows that

the subsumption principle holds even under interaction with wildcard capture.

78

Lemma 7 (Subtyping Preserves matching (receiver)). If (a) ∆ ` ∃∆1.N1 @: ∃∆2.N2

and (b) mtype(m; N2) = <Y2 → [B2L-B2U]> (U2)→ U2 and

(c) mtype(m; N1) = <Y1 → [B1L-B1U]> (U1)→ U1 and (d) sift(R; U2; Y2) = (R′; U′2) and (e)

match(R′; U′2; P; Y2; T) and (f) ∅ ` ∆ OK and (g) ∆,∆′ ` T OK then: (1) sift(R; U1; Y1) =

(R′; U′1) and (2) match(R′; U′1; P; Y1; T).

6.7 Discussion

This section discusses important practical issues for supporting definition-site vari-

ance in Java. Section 6.7.1 discusses a type bound analysis Armed with the VarJ

calculus, it also revisits the issue related to F-bounded polymorphism that was dis-

cussed in Section 5.4. Section 6.7.2 discusses a soundness issue that occurs in any

language that supports definition-site variance and that is compiled with an erasure-

based translation.

6.7.1 Boundary Analysis

Definition-site variance can imply that the variance of a type does not depend

on all of the type bounds that occur in the type. Chapter 4 presented a definition

of var(X; U) that performed a simple boundary analysis to compute such irrelevant

bounds. The variance returned by var(X; U) might not depend on all type bounds

that occurred in U. As discussed in Section 3.2, if generic C<Y> is covariant wrt to Y,

then the lower bound of a use-site variant instantiation is ignored, which is sound for

the VarLang calculus:

var(X; C<-T>) = (+ t −)⊗ var(X; T) = ∗ ⊗ var(X; T) = ∗

Hence, var(X; C<-T>) = ∗, even if X occurred in the lower bound, T.

This simple boundary analysis is not safe for languages that can declare F-bounded

type variables within type expressions. F-bounded type variables cannot be declared

79

within type expressions in VarLang or in Java. In Java, F-bounded class type pa-

rameters can be declared in type definitions but not in type expressions. Hence,

we can analyze the variance of F-bounds in Java type definitions to safely constrain

definition-site variances. Our early work [1] conservatively assumed upper bounds

of class type parameters are in invariant positions. Scala assumes upper bounds of

class type parameters are covariant positions even if they are an F-bound [51, Section

4.5]. This make sense since the range of class type variables (between lower and upper

bounds) should be narrower in the subtype. As explained in a footnote in Section 6.3,

bounds on class type parameters do not constrain definition-site variance in VarJ.

6.7.1.1 F-Bounds in Existential Types

The ability to ignore type bounds is present in a disciplined way in our VarJ

formalism, although there is no explicit variance joining mechanism in the definition

of var. For example, if Iterator is covariant in its type parameter, we can infer the

following, where the notation T ≡ U denotes “T <: U ∧ U <: T”:

∃X→ [Dog-Animal].Iterator<X> ≡ ∃X→ [⊥-Animal].Iterator<X>

Clearly, ∃X→ [Dog-Animal].Iterator<X> <: ∃X→ [⊥-Animal].Iterator<X> is deriv-

able using rule SE-Pack because the range of the existential type variable is wider in

the supertype. However, it is not always safe nor derivable to narrow the range of a

type variable in the supertype. In the inverse relationship, the range of X is squeezed

from [⊥-Animal] to [Dog-Animal] in the supertype:

∃X→ [⊥-Animal].Iterator<X> <: ∃X→ [Dog-Animal].Iterator<X> (6.11)

This relationship is derivable by applying a combination of the SE-SD, SE-Pack, and

ST-* rules:

80

∃X→ [⊥-Animal].Iterator<X>

<: ∃X→ [⊥-Animal].Iterator<Animal>

(by covariance of Iterator and X→ [⊥-Animal] ` X <: Animal)

<: ∃∅.Iterator<Animal> (since X does not occur in body Iterator<Animal>)

<: ∃X→ [Dog-Animal].Iterator<X> (packed argument Animal to an existential)

As we saw in Section 5.4, narrowing the range of an existential type variable in

a supertype is not sound in the presence of F-bounded polymorphism. It is impor-

tant to realize that this issue is not limited to use of recursive bounds of class type

parameters.6 The counterexample in Section 5.4 used interface Trouble<P extends

List<P>> extends Iterator<P> {}. However, even if we restrict our attention to a

plain Iterator (or, equivalently, if the class type constraint, extends List<P>, of

Trouble is removed) it is still not safe to assume the following subtype relation, by

reasoning similar to that used in Section 5.4:

∃X→ [YourList-List<X>].Iterator<X> <: ∃X→ [MyList-List<X>].Iterator<X>

More generally, the above subtype relationship would violate the subsumption prin-

ciple. An instance of the latter type can return a ∃X → [MyList-List<X>].List<X>

from its next method, but the former type cannot because by the invariance of List,

∃X→ [YourList-List<X>].List<X> 6<: ∃X→ [MyList-List<X>].List<X>

6In our earlier work [1], when we inferred definition-site variance of Java type parameters, it
sufficed to be overly conservative at this point: the mere appearance of a class type variable in an
upper bound of any type parameter caused us to consider the definition as invariant relative to that
class type variable. If a class type parameter occurs in the upper bound of a method type parameter,
we no longer restrict the definition-site variance to invariance. Such an occurrence is not a recursive
bound on a class type parameter because class and method type parameters are distinct. Upper
bounds of method type parameters are in contravariant positions, as explained in Section 6.3.

81

In contrast to subtype relationship (6.11), above, VarJ does not support the above

erroneous subtyping because it cannot establish that the upper bounds of the two

instantiations of Iterator are related. In particular, we cannot derive that ∃X →

[YourList-List<X>].List<X> is a subtype of some non-existential type, ∃∅.List<T>,

which is, in turn, a subtype of ∃X→ [MyList-List<X>].List<X>.

Contrasting the two examples shows that boundary analysis is complex and can

be unintuitive to the programmer. Note, however, that the VarJ calculus merely tells

us what is possible to infer correctly. A practical implementation may choose not

to perform all possible inferences. A specific scenario is that of separating boundary

analysis from type checking. Useless bounds can be “removed” during a preprocess-

ing step performed before type checking. This is analogous to general type inference

algorithms relative to type checking algorithms: type checking can be performed in-

dependently of the type inference performed to compute type annotations that were

skipped by programmers [32]. Similarly, our variance-based type checking can be per-

formed independently of the “useless boundary analysis”. For example, a boundary

preprocessing step could transform input type ∃X→ [Dog-Animal].Iterator<X> to the

equivalent type ∃X → [⊥-Animal].Iterator<X>. This opens the door to many prac-

tical instantiations—e.g., an optimistic but possibly unsound bound inference inside

an IDE (which interacts with the user, offering immediate feedback and suggesting

relaxations of expressions that the user types in) combined with a simple but sound

checking inside the compiler.

6.7.2 Definition-Site Variance and Erasure

A practical issue with definition-site variance concerns its use with erasure [28,

Section 4.6]. In an erasure-based translation, a compiler does not preserve type argu-

82

ments in byte code. The type, List<String>, is compiled to type List, for example.7

Unfortunately, for any language that supports definition-site variance, supports cast

expressions, and is compiled using an erasure-based translation, downcasts [28, Sec-

tion 5.1.6] that should fail at runtime instead succeed. A cast expression “(T) e” is

a downcast if the static type of e is a supertype of T. The static type of expression

((T) e) is T. A cast should “fail” at runtime if the dynamic type of e is not a subtype

of T. A ClassCastException is thrown when a cast expression fails, in Java.

The following code example demonstrates the issue with the combination of casts,

definition-site variance, and erasure. Class A is covariant and only supports reading

data using method get. Class B is invariant, extends class A, and adds the ability to

write data using method set.

class A<+X> {

private X elem;

A(X elem) { this.elem = elem; }

public X get() { return elem; }

}

class B<oX> extends A<X> {

B(X elem) { super(elem); }

void set(X elem) { this.elem = elem; }

}

void main() {

A<Integer> a = new B<Integer>(8);

A<Object> a2 = a; // fine by covariance of A

B<Object> b = (B<Object>) a2; // downcast succeeds with erasure

b.set("string");

Integer i = a.get(); // error, a.get() returns a String

}

In a language with an expansion-based translation, such as C#, type parameters

are preserved in byte code. As a result, the downcast will fail dynamically: an object

with dynamic type B<Integer> cannot be cast to a B<Object>, by the invariance of

class B.

7A type such as List that uses a generic type without supplying actual type arguments is known
as a raw type [28, Section 2.8].

83

In an erasure-based translation, however, the cast cannot check the type parameter

(which has been erased) and will therefore succeed, causing errors further down the

road. Specifically, a runtime type error could result in a non-cast expression. This

violates type soundness. This property requires that runtime type errors only occur

in cast expressions. In this code example, however, the runtime error occurs when

executing the last line, which does not contain a cast.

This practical consideration affects all type systems that combine definition-site

variance, casts, and erasure. For instance, Scala already handles such cases with a

static type warning. Effectively, no cast to a subtype with tighter variance is safe.

This result is somewhat counter-intuitive because it defies common patterns for safe

casting. For instance, the downcast above could have been performed after an “a2

instanceof B<Object>” check [28, Section 15.20.2] to establish that a2 is indeed of

type B<Object>. In this case the programmer would expect that the cast warning

can be ignored, which is not the case. In practice, any deployment of the VarJ type

system in an erasure-based setting would have to follow the same policy as Scala

regarding cast warnings.

84

CHAPTER 7

VARIANCE SOUNDNESS

This section provides intuition as to when variant subtyping (subtyping between

instantiations of a single type) is safe for program execution (does not result in runtime

type errors). A rigorous proof of type soundness of VarJ is given in Appendix B.

However, the proof of variance soundness is hidden in the vast amount of details.

Variance soundness is the property that the variance analysis infers only subtype

relationships that are type safe or cannot result in a runtime type error. This section

highlights why our variance analysis infers only type safe subtype relationships for

VarJ. Although variance soundness will be explained using VarJ, general variance

concepts that are independent of a particular language supporting execution will be

presented to highlight fundamental issues for verifying type soundness with variance.

VarLang helped established language neutral concepts for reasoning about vari-

ance. However, VarLang is not accompanied by an operational semantics. The proof

of its soundness Theorem (3) does not show how to prove that particular variant

subtyping rules do not cause runtime type errors. We will use VarJ to provide a

template for proving the absence of runtime type errors with variant subtyping.

We investigate why type soundness of VarJ holds with variant subtyping (rules

in Figure 6.6) and the variances assigned to positions in class definitions. Type

soundness of VarJ is the conjunction of the preservation Theorem (2) and the progress

Theorem (1). Satisfying these two properties implies that a runtime type error does

not result during execution of VarJ programs. Hence, proving these theorems shows

85

that the variance analysis is safe in practice or for a programming language where

programs written in the language can execute.

The subsumption property is required for type soundness because abstract terms

or variables are replaced with concrete terms or values during execution. Although

the static type of the variable may differ from the dynamic type of the value, the type

checking rules ensure that the dynamic type is a subtype of the static type. If the

subtype relation satifies the subsumption principle, the dynamic type of the variable

can do everything the static type of the variable can do. Consider the following

program written in VarJ with a couple of extra language features from Java (explicit

constructors and static and void methods).

class Animal { void speak() { ... } }

class Dog extends Animal {

void speak() { bark(); }

void bark() { ... }

}

class Box<+X> {

public final X elem;

Box(X elem) { this.elem = elem; }

}

class Client {

public static Animal unbox(Box<Animal> box) {

return box.elem;

}

public static void main() {

unbox(new Box<Dog>(new Dog())).speak();

}

}

Because Box is declared to be covariant, Box<Dog> <: Box<Animal>. The static

type of argument box in the body of method unbox is Box<Animal>. When execut-

ing method main in class Client, the method invocation unbox(new Box<Dog>(new

Dog())) reduces to [new Box<Dog>(new Dog())/box]box.elem = new Box<Dog>(new

Dog()).elem. The dynamic type of box for that method invocation is Box<Dog>, so

it needs to support the operations of Box<Animal> that are requested in the method

body. In this case, the method body requires reading an Animal from the elem field

86

of a Box<Animal>. A Box<Dog> also supports this operation, so a runtime type error

does not result.

The key properties for showing that the variance analysis only infers safe sub-

typing are illustrated at a high level in Figure 7.1. The left-hand side of the figure

contains abstract descriptions of important variance properties that are circled. The

right-hand side contains corresponding concrete properties that are specific to VarJ.

The implication arrows represent lemmas that are needed for type soundness. They

relate variance of a type to subtyping and then to subsumption or preserving op-

erations in the subtype. The first arrow/lemma states that the variance of a type

implies subtype relationships between instantiations of a type. For VarJ, this prop-

erty is expressed as the Subtype Lifting Lemma 1. The second arrow/lemma states

that every subtype relationship satisfies the subsumption principle. Together these

two lemmas imply variance soundness; that is, subtyping relationships between two

instantiations of a type allowed by variance also satisfy the subsumption principle.

As a result, runtime type errors do not result from these additional subtype relations.

The VarJ subsumption property in the figure expresses that a field’s type becomes

more specific for the subtype with variant subtyping.

The remainder of this chapter provides intuition on how variance soundness is

achieved for VarJ without going into all of the details of VarJ’s type soundness proof.

Since intuition of the proof of the Subtype Lifting Lemma 1 (the first arrow) was

already given in Section 6.2, we focus on how the subsumption principle is satisfied

(the second arrow).

7.1 Proving Subsumption in VarJ

In VarJ, only three operations can be peformed with an object:

1. Reading the field of an object.

2. Invoking a method of an object.

87

Variance Soundness Variance Soundness
Lemmas in General Lemmas in VarJ

�
�

�
Variance of Types

#

"

!
v ≤ var(X; N)

and
v(U; T)

⇓ ⇓ (Lemma 1)�
�

�
Variant Subtyping

�
�

�
[U/X]N <: [T/X]N

⇓ ⇓ (Lemma 2)

�
�

�
Subsumption Principle

'

&

$

%

ftype(f; [T/X]N) = S

⇒
ftype(f; [U/X]N)

<:
ftype(f; [T/X]N)

Figure 7.1. Key lemmas for proving variance analysis only infers type safe subtyping.
Arrows denote implication. We skip some parameters in the subtyping judgments in
this figure such as the type variable context ∆ because the exact rules are not the
focus of this chapter.

88

3. Passing an object “directly” as an argument in a call to a method or constructor.

For example, variable obj is passed directly in method call “m(obj)” but not in

method call “m(obj.g())”.

These operations need to be preserved for the subtype in order to satisfy type sound-

ness. The third operation is preserved because the subtype relation is transitive (rule

ST-Tran). For example, in method call “m(obj)” the static type of obj must be a

subtype of the method’s m formal argument type. Since obj’s dynamic type is a sub-

type of its static type, by transitivity of subtyping, the dynamic type is also a subtype

of the formal argument type. Subtyping is still transitive with variant subtyping.

Preserving the first two operations with variance is far less trivial and depends

on the variance analysis. In particular, we show how the variance analysis supports

lemmas 2 and 3. These two lemmas specify that a subtype preserves the ability to

read a field and invoke a method. Satisfying these lemmas depends on the subtype

lifting lemma and the variances assigned to type positions in class definitions. Al-

though detailed proofs of these lemmas can be found in Appendix B, we highlight the

reasoning related to variance in the proof of Lemma 2. Similar reasoning applies in

the proof of Lemma 3, so we skip its high-level proof.

VarJ does not support the ability to modify the values of fields. Section 7.3 also

discusses how the variance reasoning would need to be updated if fields could be

updated.

7.2 High-Level Proof of Lemma 2

Lemma 8 (Subtyping Specializes Field Type). If (a) ` class C<vX→ [. . .]> C

N . . . OK and (b) ∆ ` C<T> ≺: N′ and (c) ftype(f; N′) = T, then ∆ ` ftype(f; C<T>) <: T.

Before we embark on the proofs for the particular cases, note that premise (a)

implies definition-site variances in all class definitions in the proof of this lemma type

check. Also, to simplify the presentation, we only use one subtype relation symbol,

89

<:, to denote subtyping between types of any syntactic category, rather than the

three relations from Section 6.4

This lemma is proved by structural induction on both the derivations of judgments

(b) and (c).

Case:

V T (C) = vX ∆ ` v(T, U)

∆ ` C<T> <: C<U>︸︷︷︸
N′

(SD-Var)

class C<vX→ [. . .]> C N { S f; M }

ftype(fi; C<U>) = [U/X]Si

(FT-Class)

Proof :

This proof case is the only base case of this inductive proof. This case does not

require applying the inductive hypothesis. In this proof case, we use the fact that

field types are in covariant positions. Since class C type checks, we can establish the

following relationship between the definition-site variance annotations of C and the

variances of the type parameters X in the field type Si:

1. v ≤ var(X; Si)

Applying the subtype lifting lemma (Lemma 1) to (1) and the assumption ∆ `

v(T, U) gives the following:

∆ ` [T/X]Si <: [U/X]Si

‖ ‖

ftype(fi; C<T>) <: ftype(fi; C<U>)

90

Case:

V T (C) = vX ∆ ` v(T, U)

∆ ` C<T> <: C<U>︸︷︷︸
N′

(SD-Var)

CT (C) = class C<vX→ [BL-BU]> C N { S f; M }

f /∈ f

ftype(f; C<U>) = ftype(f; [U/X]N)

(FT-Super)

Proof :

This proof case uses the fact that parent types are in covariant positions. Since

class C type checks, we can establish the following relationship between the definition-

site variance annotations of C and the variances of the type parameters X in the parent

type N:

1. v ≤ var(X; N)

Applying the subtype lifting lemma (Lemma 1) to (1) and the assumption ∆ `

v(T, U) gives:

2. ∆ ` [T/X]N <: [U/X]N

3. WLOG, assume N = D<V>.

4. Class D type checks as explained in the beginning of this proof.

Applying the inductive hypothesis to (4), (2), and the assumption that ftype(f; [U/X]N)

is defined gives the following:

5. ∆ ` ftype(f; [T/X]N) <: ftype(f; [U/X]N)

Since we assumed rule FT-Super applied, field f is inherited from the parent type

N. Hence,

91

6. ftype(f; C<T>) = ftype(f; [T/X]N)

Therefore, we have the following:

∆ ` ftype(f; C<T>)

= ftype(f; [T/X]N) by (6)

<: ftype(f; [U/X]N) by (5)

= ftype(f; C<U>) by the case assumption that FT-Super was applied

Case:

class C<vX→ [. . .]> C N { S f; M } C 6= D ∆ ` [T/X]N <: D<U>

∆ ` C<T> <: D<U>︸︷︷︸
N′

(SD-Super)

Proof :

This proof case does not depend on which rule derived premise (c) ftype(f; D<U>) =

T. Since C 6= D, we know that field f is not defined in class C (f 6∈ f).1 The lemma holds

for this case because of the inheritance subtyping. This can be seen by noting that

the inductive hypothesis applies to the premise ∆ ` [T/X]N <: D<U>. Furthermore,

since f is an inherited field, ftype(f; C<T>) = ftype(f; [T/X]N), by rule FT-Super.

1Although Java allows inherited field names to be redefined in subclasses [28, Section 15.11]
with a new type, VarJ does not allow this for simplicity. For example, class definitions “class
A { String f; }” and “class B extends A { int f; }” are allowed in Java. Contrasting with
dynamic dispatch of methods, the declaration accessed by a field access expression is determined
completely at compile time. [28, Section 15.11.2] presents the syntax used to access a field with the
same name in the super class. Hence, that language feature is not related to subtyping or variance.

92

The proof for this case does not depend on variance reasoning. Since the purpose

of this proof is to highlight variance reasoning, we direct the reader to the proof of

this lemma in the appendix for further details. This lemma appears as Lemma 18 in

Appendix B.

7.3 Supporting Field Writes

VarJ allows reading values from fields but not modifying the values of fields. This

section describes how the variance reasoning in VarJ would be updated if field values

could change. To explain the updates to the variance reasoning, we show how the

statement and proof of Lemma 8 would be updated. We also state the additional

constraint on definition-site variance annotations to satisfy the updated version of

Lemma 8.

The only proof case of Lemma 8 that would need to change is the base case. In

the other proof cases, applying the inductive hypothesis would allow us to derive

the desired properties. In the base case, rules SD-Var and FT-Class were applied to

derive premises (b) and (c), respectively.

The base case shows how we get the desired subtype relationship between field

types, ftype(fi; C<T>) <: ftype(fi; C<U>), when C<T> <: C<U>. This subtype relationship

is desired to support the subsumption principle. In particular, this relationship shows

that we can retrieve a value of type ftype(fi; C<U>) when reading field fi from an

instance of the subtype, C<T>.

If field fi could be updated, then the inverse subtype relationship is also desired,

when C<T> <: C<U>:

ftype(fi; C<U>) <: ftype(fi; C<T>) (7.1)

In order to write a term of type S to field fi of an object of type C<U> it must

be the case that S <: ftype(fi; C<U>). If subtype relationship 7.1 also holds, then

93

S <: ftype(fi; C<U>) <: ftype(fi; C<T>). Hence, the ability to write an instance of type

S to field fi is supported by an instance of the subtype, C<T>, given relationship 7.1.

As a result, the statement of Lemma 8 should be updated by adding the conclusion

∆ ` ftype(f; N′) <: ftype(f; C<T>).

Subtype relationship 7.1 holds if we assume field fi’s type is also in a contravariant

position. That is, field fi’s type, Si, is in both a covariant position and also in a

contravariant position. To reflect in the type checking rules that field types are in

contravariant positions, the following judgment would need to be added as a premise

to rule W-Cls from Figure 6.3 in Section 6.3:

¬vX ` T mono

Since Si is in a contravariant position and class C type checks, we can establish

the following relationship between the definition-site variance annotations of C and

the variances of the type parameters X in the field type Si:

1. v ≤ −⊗ var(X; Si)

Applying Lemma 15 from Appendix B to (1) and the assumption ∆ ` v(T, U) of

rule SD-Var gives us the desired subtype relationship:

∆ ` [U/X]Si <: [T/X]Si

‖ ‖

ftype(fi; C<U>) <: ftype(fi; C<T>)

Since we have derived subtype relationship 7.1, we have showed that the ability

to write values to a field is preserved in the subtype.

94

CHAPTER 8

AN APPLICATION: DEFINITION-SITE VARIANCE
INFERENCE FOR JAVA

To showcase the potential of our unified treatment of use-site and definition-site

variance, we implemented a mapping from Java to VarLang and used it to produce

a (definition-site) variance inference algorithm. This software application applies the

formal framework developed in previous chapters to reason about and infer definition-

site variance. We evaluated the potential benefit of adding definition-site variance to

Java. We analyzed six large Java libraries with generics (including the standard

library). Findings from this experiment are given in this chapter.

8.1 Applications

Our mapping from Java to VarLang is straightforward: We produce a VarLang

module definition for each Java class or interface, and all Java type expressions are

mapped one-to-one on VarLang type expressions with the same name. The module

definitions contain variance constraints that correspond to the well-understood vari-

ance of different positions (as discussed in Section 6.3): return types are a covariant

position, argument types are a contravariant position, types of non-final fields are

both covariant and contravariant positions, supertypes are a covariant position.

Our mapping is conservative: Although we handle the entire Java language, we

may constrain definition-site variances to less-general variances than required to be

safe. For instance, we ignore the potential for more general typing through reasoning

about member visibility (i.e., private/protected access control). Member visibility,

95

in combination with conditions on self-reference in type signatures, can be used to

establish that some fields or methods cannot be accessed from outside a class/package.

Nevertheless, our mapping does not try to reason about such cases to produce less

restrictive variance constraints. We prefer to infer unquestionably safe variances at

the expense of slightly worse numbers (which still fully validate the potential of our

approach).

We used this mapping to implement a definition-site variance inference algorithm.

That is, we took regular Java code, written with no concept of definition-site variance

in mind, and inferred how many generics are purely covariant/contravariant/bivari-

ant. Inferring pure variance for a generic has several practical implications:

• One can use our algorithm to replace the Java type system with a more lib-

eral one that infers definition-site variance and allows subtyping based on the

inferred variances. Such a type system would accept all current legal Java pro-

grams, yet allow programs that are currently not allowed to type-check, without

violating soundness. This would mean that wildcards can be omitted in many

cases, freeing the programmer from the burden of always specifying tedious

types in order to get generality. For instance, if a generic C is found to be

covariant, then any occurrence of C<? extends T> is unnecessary. (We report

such instances as “unnecessary wildcards” in our measurements.) Furthermore,

any occurrence of C<T> or C<? super T> will be immediately considered equiv-

alent to C<? extends T> or C<?>, respectively, by the type system, resulting in

more general code. (We report such instances as “over-specified methods” in

our measurements.)

• One can use our algorithm as a programmer’s assistant in the context of an

IDE or as an off-line tool, to offer suggestions for more general types that are,

however, still sound. For instance, for a covariant generic, C, every occurrence of

type C<T> can be replaced by C<? extends T> to gain more generality without

96

any potential for more errors. Just running our algorithm once over a code

body will reveal multiple points where a programmer missed an opportunity to

specify a more general type. The programmer can then determine whether the

specificity was intentional (e.g., in anticipation that the referenced generic will

later be augmented with more methods) or accidental.

In practice, our implementation (in Scala) of the optimized constraint solving

algorithm described in Section 4.4 takes less than 3 minutes (on a 3.2GHz Intel Core

i3 machine w/ 4GB RAM) to analyze the generics of the entire Java standard library.

Almost all of the time is spent on loading, parsing, and processing files, with under

30 seconds constraint solving time.

Finally, we need to emphasize that our signature-only based inference algorithm

is modular. Not only does it reason entirely at the interface level (does not inspect

method bodies), but also the variance of a generic depends only on its own definition

and the definition of types it (transitively) references, and not on types that reference

it. This is the same modularity guarantee as with standard separate compilation.

We can also generate constraints from inspecting method bodies. This method-

body based analysis is explained later in Section 9.4. When the method-body analysis

is performed, we expect improved numbers (since, for instance, an invariant type may

be passed as a parameter, but only its covariance-safe methods may be used—e.g., a

list argument may only be used for reading). Nevertheless, analyzing the bodies of

methods has a cost in modularity: the analysis would still not depend on clients of a

method, but it would need to examine subtypes, to analyze all the possible overriding

methods.

8.2 Analysis of Impact

To measure the impact of our approach, we ran our inference algorithm over 6

Java libraries, the largest of which is the core Java library from Oracle’s JDK 1.6, i.e.,

97

classes and interfaces in the packages of java.*. The other libraries are JScience [22],

a Java library for scientific computing; Guava [10], a superset of the Google collections

library; GNU Trove [25]; Apache Commons-Collection [5]; and JPaul [56], a library

supporting program analysis.

The results of our experiment appear in Figures 8.1, 8.2, and 8.3. Definition-

site variances were inferred with two types of analyses. The signature-only analysis

inferred definition-site variance using only the type signature of members of class/type

definitions. The method-body analysis is described in Section 9.4. The method-

body analysis may relax the constraints on definition-site variances, thereby allowing

more generics to be variant. Statistics computed using the method-body analysis are

shaded in the tables. Shaded results are for the method body analysis, unshaded for

the signature-only analysis

Together, these libraries define 3,827 classes and interfaces, out of which 1,093

are generics. These generics declare 1,442 type parameters—i.e., some of the generics

declare more than one type parameter. Statistics in Figure 8.1 are collapsed per-class:

An invariant class is invariant in all of its type parameters, whereas a variant class

is variant in at least one of its type parameters. Hence, a class can be counted as,

e.g., both covariant and contravariant, if it is covariant in one type parameter and

contravariant in another. The “variant” column, however, counts the class only once.

The five “invar./variant/cov./contrav./biv/” columns show the percentage of classes

and interfaces that are inferred by our algorithm to be invariant versus variant, for

all three flavors of variance.

As can be seen, 26% of classes or interfaces are variant in at least one type param-

eter. (Our “Total” row treats all libraries as if they were one, i.e., sums individual

numbers before averaging. This means that the “Total” is influenced more by larger

libraries, especially for metrics that apply to all uses of generics, which may also oc-

cur in non-generic code.) This means that about a 1/4 of the generics defined should

98

Library # # Type Definitions
Types Generics invar. variant cov. contrav. biv.

Java

classes 1786 156 80% 20% 13% 5% 2%

1786 156 80% 20% 13% 5% 2%
interfaces 329 31 55% 45% 39% 6% 0%

329 31 55% 45% 39% 6% 0%
total 2115 187 76% 24% 17% 5% 2%

2115 187 76% 24% 17% 5% 2%

JScience

classes 110 46 54% 46% 7% 0% 39%

110 46 54% 46% 7% 0% 39%
interfaces 60 13 62% 38% 8% 15% 15%

61 14 50% 50% 14% 21% 14%
total 170 59 56% 44% 7% 3% 34%

171 60 53% 47% 8% 5% 33%

Apache

classes 370 302 76% 24% 12% 8% 4%

370 302 76% 24% 12% 8% 4%
interfaces 29 28 64% 36% 25% 11% 0%

30 29 62% 38% 24% 14% 0%
total 399 330 75% 25% 13% 8% 3%

400 331 75% 25% 13% 8% 3%

Guava

classes 551 289 84% 16% 9% 7% 1%

551 289 84% 16% 9% 7% 1%
interfaces 50 36 42% 58% 39% 17% 3%

50 36 42% 58% 39% 17% 3%
total 601 325 79% 21% 12% 8% 1%

601 325 79% 21% 12% 8% 1%

Trove

classes 322 46 78% 22% 15% 7% 0%

322 46 78% 22% 15% 7% 0%
interfaces 76 17 0% 100% 6% 94% 0%

76 17 0% 100% 6% 94% 0%
total 398 63 57% 43% 13% 30% 0%

398 63 57% 43% 13% 30% 0%

JPaul

classes 129 114 78% 22% 10% 7% 5%

129 114 77% 23% 10% 8% 5%
interfaces 13 13 69% 31% 0% 31% 0%

13 13 69% 31% 0% 31% 0%
total 142 127 77% 23% 9% 9% 5%

142 127 76% 24% 9% 10% 5%

Total

classes 3268 953 78% 22% 11% 6% 4%

3268 953 78% 22% 11% 7% 4%
interfaces 559 140 49% 51% 25% 24% 2%

559 140 47% 53% 26% 25% 2%
total 3827 1093 75% 25% 13% 9% 4%

3827 1093 74% 26% 13% 9% 4%

Figure 8.1. Definition-Site Variance Inference Statistics by Type Definitions. An
invariant class is invariant in all of its type parameters, whereas a variant class is
variant in at least one of its type parameters. Shaded results are for the method
body analysis, unshaded for the signature-only analysis.

99

Library # # Unnecessary Over-specified
Types Generics wildcards methods

Java

classes 1786 156 16% 7%

1786 156 16% 7%
interfaces 329 31 12% 9%

329 31 12% 9%
total 2115 187 16% 7%

2115 187 16% 7%

JScience

classes 110 46 89% 30%

110 46 89% 30%
interfaces 60 13 100% 20%

61 14 100% 20%
total 170 59 89% 29%

171 60 89% 29%

Apache

classes 370 302 59% 16%

370 302 59% 16%
interfaces 29 28 9% 0%

30 29 9% 0%
total 399 330 58% 16%

400 331 58% 16%

Guava

classes 551 289 41% 10%

551 289 41% 10%
interfaces 50 36 33% 4%

50 36 33% 4%
total 601 325 41% 10%

601 325 41% 10%

Trove

classes 322 46 30% 26%

322 46 30% 26%
interfaces 76 17 0% 0%

76 17 0% 0%
total 398 63 30% 26%

398 63 30% 26%

JPaul

classes 129 114 5% 25%

129 114 5% 25%
interfaces 13 13 0% 0%

13 13 0% 0%
total 142 127 5% 25%

142 127 5% 25%

Total

classes 3268 953 39% 15%

3268 953 39% 15%
interfaces 559 140 19% 7%

559 140 19% 7%
total 3827 1093 39% 15%

3827 1093 39% 15%

Figure 8.2. Unnecessary Wildcards and Over-Specified Methods. Shaded results
are for the method body analysis, unshaded for the signature-only analysis.

100

Library # Type Type Parameters Recursive
Params invar. variant cov. contrav. biv. variances

Java

classes 190 84% 16% 11% 4% 2% 18%

190 84% 16% 11% 4% 2% 18%
interfaces 36 61% 39% 33% 6% 0% 33%

36 61% 39% 33% 6% 0% 33%
total 226 80% 20% 14% 4% 1% 20%

226 80% 20% 14% 4% 1% 20%

JScience

classes 50 58% 42% 6% 0% 36% 54%

50 58% 42% 6% 0% 36% 54%
interfaces 15 67% 33% 7% 13% 13% 7%

15 53% 47% 13% 20% 13% 7%
total 65 60% 40% 6% 3% 31% 43%

65 57% 43% 8% 5% 31% 43%

Apache

classes 399 82% 18% 9% 6% 3% 8%

399 82% 18% 9% 6% 3% 8%
interfaces 37 70% 30% 22% 8% 0% 30%

37 68% 32% 22% 11% 0% 30%
total 436 81% 19% 10% 6% 3% 10%

436 81% 19% 10% 6% 3% 10%

Guava

classes 433 88% 12% 7% 5% 0% 9%

433 88% 12% 7% 5% 0% 9%
interfaces 53 51% 49% 30% 17% 2% 21%

53 51% 49% 30% 17% 2% 21%
total 486 84% 16% 10% 6% 1% 10%

486 84% 16% 10% 6% 1% 10%

Trove

classes 48 77% 23% 15% 8% 0% 31%

48 77% 23% 15% 8% 0% 31%
interfaces 18 0% 100% 6% 94% 0% 0%

18 0% 100% 6% 94% 0% 0%
total 66 56% 44% 12% 32% 0% 23%

66 56% 44% 12% 32% 0% 23%

JPaul

classes 149 83% 17% 8% 5% 4% 21%

149 82% 18% 8% 6% 4% 21%
interfaces 14 64% 36% 0% 36% 0% 7%

14 64% 36% 0% 36% 0% 7%
total 163 81% 19% 7% 8% 4% 20%

163 80% 20% 7% 9% 4% 20%

Total

classes 1269 83% 17% 9% 5% 3% 14%

1269 83% 17% 9% 5% 3% 14%
interfaces 173 54% 46% 22% 22% 2% 21%

173 53% 47% 23% 23% 2% 21%
total 1442 80% 20% 10% 7% 3% 15%

1442 79% 21% 10% 7% 3% 15%

Figure 8.3. Definition-Site Variance Inference Statistics by Type Parameters.
Shaded results are for the method body analysis, unshaded for the signature-only
analysis.

101

be allowed to enjoy general variant subtyping without users having to annotate them

with wildcards.

Figure 8.2 illustrates the burden of default invariant subtyping in Java, and the

benefits of our approach. “Unnecessary Wildcards” shows the percentage of wild-

cards in method signatures that are unnecessary in our system, based on the inferred

definition-site variance their generics. For instance, given that our technique in-

fers interface java.util.Iterator<E> to be covariant, all ‘? extends’ annotations in

instantiations of Iterator are unnecessary. This number shows that, using our tech-

nique, 39% of the current wildcard annotations can be eliminated without sacrificing

either type safety or the generality of types!

The “Over-specified Method” column lists the percentage of method arguments

that are overly specific in the Java type system, based on the inferred definition-site

variance of their generics. For instance, given that the inferred definition-site variance

of Iterator<E> is covariant, specifying a method argument with type Iterator<T>,

instead of Iterator<? extends T>, is overly specific, since the Java type system would

preclude safe invocations of this method with arguments of type Iterator-of-some-

subtype-of-T. We find that 15% of methods are over-specified. This means that 15%

of the methods could be used in a much more liberal, yet still type-safe fashion. It is

also interesting that this number is derived from libraries and not from client code.

We expect that the number of over-specified methods would be much higher in client

code, since programmers would be less familiar with wildcards and less confident

about the operations supported by variant versions of a type.

Variance statistics per generic type parameter are in Figure 8.3. The last col-

umn, “Recursive variances”, shows the percentage of type parameters for which their

definition-site variances are recursively constrained. Example types of recursively

constrained variances were given in Section 3.3. For example, recursive variance type

1 would result in a constraint of the form var(X; C) v + ⊗ var(X; C), where X is a

102

type parameter of generic C. As discussed in that chapter, recursively constrained

type parameters can be bivariant even when their type parameter is used in the type

definition. We know of no other technique that would infer anything other than in-

variance for recursively constrained type parameters. The JScience library shows the

largest impact of inferring general variances with recursive variances. Out of the six

libraries, the JScience library has the largest percentage of recursive variances. Per-

haps not surprisingly, it also has the largest percentage of bivariant type parameters.

8.2.1 Backward Compatibility and Discussion

As discussed earlier, our variance inference algorithm can be used to replace the

Java type system with a more liberal one, or can be used to offer suggestions to

programmers in the context of an IDE. Replacing the Java type system with a type

system that infers definition-site variance is tempting, but would require a pragmatic

language design decision, since there is a cost in backward compatibility: in some

cases the programmer may have relied on types being rejected by Java, even though

these types can never cause a dynamic type error.

We found one such instance in our experiments. In the reference implementation

for JSR 275 (Measures and Units) [23], included with the JScience library [22], a

group of 11 classes and interfaces are collectively bivariant in a type parameter, Q

extends Quantity. In the definition of Unit<Q extends Quantity>, for example, the

type parameter Q appears nowhere other than as the type argument to Unit<Q>. Closer

inspection of the code shows that Quantity is extended by 43 different subinterfaces,

such as Acceleration, Mass, Torque, Volume, etc. It appears that the authors of the

library are actually relying on the invariant subtyping of Java generics, to ensure,

e.g., that Unit<Acceleration> is never used as Unit<Mass>.

Of course, full variance inference is only one option in the design space. Any

combination of inference and explicitly stated variance annotations, or just adding

103

explicit definition-site variance to Java, are strictly easier applications from a typing

standpoint. The ultimate choice is left with the language designer, yet the potential

revealed by our experiments is significant.

104

CHAPTER 9

REFACTORING BY INFERRING WILDCARDS

Wildcard annotations can improve the generality of Java generic libraries, but

require heavy manual effort. This chapter presents an algorithm for refactoring and

inferring more general type instantiations of Java generics using wildcards. Compared

to past approaches, our work is practical and immediately applicable: we assume no

changes to the Java type system, while taking into account all its intricacies. Our

system allows users to select declarations (variables, method parameters, return types,

etc.) to generalize and considers declarations not declared in available source code.

It then performs an inter-procedural flow analysis and a method body analysis, in

order to generalize type signatures. We evaluate our technique on six Java generic

libraries. We find that 34% of available declarations of variant type signatures can be

generalized—i.e., relaxed with more general wildcard types. On average, 146 other

declarations need to be updated when a declaration is generalized, showing that this

refactoring would be too tedious and error-prone to perform manually.

9.1 Contributions Relative to Past Work

This chapter is based on the observation that the straightforward approach of

Chapter 8 needs significant extension to yield benefits with existing programs and

without changing the Java type system. First, the approach ignores practical com-

plexities. Preserving the original program’s semantics with additional wildcards may

require adding wildcards to syntactically-illegal locations (e.g., wildcards are not al-

lowed in the outermost type arguments in parent type declarations in Java). Second,

105

we have not explained how we can infer more general types by analyzing method

bodies. Most importantly, however, the statistics in Chapter 8 showed the potential

impact when the entire program and all its libraries get rewritten. Even if this was

what the programmer desired, it is an impossible requirement in practice: part of the

code is unavailable for a rewrite (e.g., fixed signatures of native methods). Instead,

we need an approach that is aware of which type occurrences cannot be generalized

and integrates this knowledge into its variance inference. Furthermore, the use mode

of a variance inference algorithm is typically local: the programmer wants help in

safely generalizing a handful of type occurrences, as well as any other types that are

essential in order to generalize the former.

We present a modular approach that addresses the above need, by leveraging an

inter-procedural flow analysis. Our technique has an incremental usage mode: we

only perform program rewrites based on program sites that the programmer selected

for refactoring (and on other sites these depend on), and not on an entire, closed code

base. Our type generalization fully takes into account the peculiarities of the Java type

system, as well as other constraints (e.g., generic native methods) that render some

type occurrences off-limits for generalization. Furthermore, we perform a method

body analysis that can infer more general types than mere method signature analysis.

The result is a refactoring algorithm that allows safely inferring more general types

for any subset of a program’s type occurrences and for any pragmatic environment

restrictions. Our approach yields more general types than past work [21, 41] and

assumes no changes to Java (unlike, e.g., Chapter 6).

In outline, this work makes the following contributions:

• To assist the programmer with utilizing variance in Java, we present a refactor-

ing approach that automatically rewrites Java code with more general wildcard

types. Our tool allows users to select which declarations to generalize the type

signatures of. Similar, to work in Chapter 4, our approach infers definition-site

106

variance based on type signatures for determining if a parameterized type is

overly specified. Unlike that work, we also perform an inter-procedural analysis

based on how objects are actually used in the program to determine if the pa-

rameterized types specified by the programmer are overly restrictive. A method

taking in a parameter of type List<T>, for instance, may only invoke methods

available from a List<? extends T>.

• Our approach works in a context where not all types can be rewritten because,

for example, they are declared in a third-party library for which the source code

is unavailable. The user may also select declarations to exclude from rewriting

if keeping the more specific type is desired to support future code updates. For

instance, the user may not want the return type of some method to be changed

to a supertype, since the supertype provides fewer methods of a class to a client.

• Our approach handles the entire Java language and preserves the behavior of

programs employing intricate Java features, such as generic methods, method

overrides, and wildcard capture.

• We evaluate our tool on six Java generic libraries. To measure the benefit of

analyzing method bodies, we performed analyses both when taking in method

bodies into account and when inferring definition-site variance solely based

on a generic’s type signature. We find that 34% of available declarations of

variant type signatures (generic types that may promote a wildcard) can be

generalized—i.e., relaxed with more general wildcard types. On average, 146

declarations will need to be updated if a declaration is generalized, showing that

this refactoring would be too tedious and error-prone to perform manually.

• We offer both empirical evidence and a proof that the refactoring algorithm

is sound. The six large Java generic libraries that were analyzed were also

refactored by our tool. The refactored code of the libraries was compiled using

107

javac. Appendix D formally argues why the refactoring algorithm preserves the

ability to compile programs.

9.2 Illustration

We next illustrate the impact and intricacies of inferring variance annotations

in a pragmatic setting. Figure 9.1 presents an example program before and after

automatic refactoring by our tool. This program declares two classes: WList, a write-

only list, and MapEntryWList, a specialized WList of map entries. Our tool allows

a user to select declarations whose types should be generalized. For this example,

suppose the user selects method arguments source, dest, strings, and entry (lines

7, 11, 18, and 21, respectively).

1. Consider generalizing the type of the argument, dest, declared on line 11, of

method addAndLog. In general, the interface, java.util.List, is invariant in its

type parameter because it allows both reading elements from a list and writing

elements to a list. However, in method addAndLog, no elements are read from

list dest. Within this method, only method add is invoked on dest to write to

this list. The type signature of List.add contains the type parameter of List

only in the argument type, which is a contravariant position. Hence, only a

contravariant version of List is required by dest, and its type can be safely

promoted to List<? super T>.

2. The user has selected generalizing the type of the argument source of method

addAll declared on line 7. Only method iterator is invoked on source within

this method, which returns an Iterator<E>. Iterator is covariant in its type

parameter, and our tool infers this. As a result, the type parameter of List

in the type signature of List.iterator occurs only covariantly. Because of the

108

1 import java.util.*;
2 class WList<E> {
3 private List<E> elems = new LinkedList<E>();
4 void add(E elem) {
5 addAll(Collections.singletonList(elem));
6 }
7 void addAll(List<E> source) {
8 addAndLog(source.iterator(), this.elems);
9 }

10 static <T> void

11 addAndLog(Iterator<T> itr, List<T> dest) {
12 while(itr.hasNext()) {
13 T elem = itr.next();
14 log(elem);
15 dest.add(elem);
16 }
17 }

18 static void client(WList<String> strings) { ... }

19 }
20 class MapEntryWList<K,V> extends WList<Map.Entry<K,V>> {

21 @Override void add(Map.Entry<K, V> entry) { }

22 }

1 import java.util.*;
2 class WList<E> {
3 private List<E> elems = new LinkedList<E>();
4 void add(E elem) {
5 addAll(Collections.singletonList(elem));
6 }
7 void addAll(List<? extends E> source) {
8 addAndLog(source.iterator(), this.elems);
9 }

10 static <T> void
11 addAndLog(Iterator<? extends T> itr, List<? super T> dest) {
12 while(itr.hasNext()) {
13 T elem = itr.next();
14 log(elem);
15 dest.add(elem);
16 }
17 }
18 static void client(WList<? super String> strings) { ... }
19 }
20 class MapEntryWList<K,V> extends WList<Map.Entry<K,V>> {
21 @Override void add(Map.Entry<K, V> entry) { }
22 }

Figure 9.1. Code comparison. Original code on the top. Refactored code on the
bottom. Declarations that were selected for generalization are shaded in the original
version.

109

limited use of source in addAll we can safely infer that the type of source can

be promoted to the more general type List<? extends E>.

3. If only the type of source changes to List<? extends E>, then the refactored

program will no longer compile. After changing source’s type, source.iterator()

no longer returns an Iterator<E> but instead an Iterator<? extends E>. The

method call to addAndLog on line 8 would cause a type error because this method

expects a stricter type, Iterator<E>.1 As a result, to perform this refactoring

without introducing compilation errors, we must perform a flow analysis to de-

termine if generalizing the type of one declaration requires changing the types

of other declarations. This flow analysis requires careful reasoning as depen-

dency relationships arise from many non-trivial language features in Java. In

this example, the type of the itr field (line 11) is also generalized to Iterator<?

extends T>.

4. The user has selected for generalization the type of the strings argument of

method client, declared on line 18. The type of this argument is promoted

to WList<? super String>. The method body is elided for brevity, but let us

assume that all non-static methods of WList are dispatched on variable strings

in this method. The refactoring of the type of strings is safe because the

tool can infer that WList is contravariant, but only after performing the earlier

refactorings. In the original version, the occurrence of the type parameter E in

List<E>, the type of source, constrained the inferred definition-site variance of

WList to be invariance because the inferred definition-site variance of List is

invariance. Changing the type of source to List<? extends E>, however, allows

1 The inferred type parameter passed in the invocation of the generic method addAndLog is E.
Thus, the first argument type of addAndLog is Iterator<E>.

110

the definition-site variance of WList to be contravariance.2 This contravariance

of WList tells us that it is safe to add the use-site annotation ? super to the

type of strings. Note how this type generalization is done for different reasons

than that of source, earlier: type WList is inherently contravariant (after earlier

refactorings), therefore it does not matter how strings is used. In contrast, the

generalization of the type of source was possible only because of the way source

was used in method addAll.

5. Argument entry of the overriding method, add, is declared on line 21. Our

tool infers that Map.Entry is covariant in its first type parameter. Therefore,

changing the type of entry to Map.Entry<? extends K, V> would not cause a

runtime error. Our tool does not apply this update, however, for the following

reasons:

(a) Java (javac) would no longer infer that MapEntryWList.add overrides WList.

add. Because of the ‘@Override’ annotation, javac would flag a compilation

error.

(b) Removing the ‘@Override’ annotation would seem not cause a compila-

tion error. Instead since MapEntryWList.add does not override WList.add,

Java now considers that MapEntryWList.add overloads WList.add, where

the arguments types of MapEntryWList.add and WList.add are Map.Entry<?

extends K, V> and Map.Entry<K, V>, respectively. However, the erasures

[28, Section 4.6] of the type signatures of both methods are the same:

Both argument types erase to Map.Entry. Overloaded methods that have

the same erasure result in a compilation error.

2The occurrence of the type parameter E in the type of the field elems, declared on line 3, does
not constrain the definition-site variance of E in WList because elems is what is called object-private
in the Scala language [51, Sections 5.2 and 4.5]: elems is not only private to WList but also only
accessed from a this qualifier on line 8.

111

(c) Even if the Java compiler did not flag a compilation error as a result

of generalizing the type of entry, performing this refactoring is undesir-

able because it could change the runtime behavior of the program. Client

code that previously invoked MapEntryWList.add at runtime may now in-

voke WList.add instead, since MapEntryWList.add would no longer override

WList.add.

(d) Another option to allowing the type of entry to be generalized would be

to change the parent type declaration of MapEntryWList. Our tool does

not add wildcards to parent type declarations for a number of reasons

that we discuss in Section 9.3.6. For instance, the most straightforward

generalization would change the parent type of MapEntryWList to WList<?

super Map.Entry<K, V>>, since we inferred the refactored version of WList

to be contravariant. This change is not legal in Java because wildcards are

not allowed in the outermost type arguments in parent type declarations

in Java. (The type in question is not a class type but rather a reference

type [28, Section 4.3].)

Our tool will generalize the type signature of an overridden method only if all

of the methods it overrides and vice versa can also be generalized, so that all

overriding relationships in the original program are maintained. More generally,

our tool ensures the behavior of programs is preserved.

Although the above example is small, it illustrates how generalizing types with

Java wildcards requires intricate, tedious, and error-prone reasoning. The complexity

of the refactoring, thus, warrants automation.

112

9.3 Type Influence Flow Analysis

The act of generalizing occurrences of types in a program introduces a tradeoff.

On the one hand, we want to assist programmers with generalizing their interfaces

in a type safe manner—i.e., to replace type occurrences with more general types.

More general types for the interface of a class, however, entail fewer operations for

implementations of this interface. For instance, promoting the type of an object

from List<String> to type List<? extends String> results in the inability of that

object to add String objects to itself. Furthermore, in Java, an overriding method

must have the same type signature as the overridden method. Hence, generalizing

the types in a method’s signature also restricts the ability of subclasses to provide

alternative implementations.

To enable library designers to manage this tradeoff, our tool allows users to choose

which declarations to update instead of always generalizing all (rewritable) types.

A refactoring tool should not introduce new compilation errors for practicality and

should preserve the semantics of the original program. Thus, automating the update

of a fragment of the program requires a flow analysis to determine, given a type

occurrence to update, the set of other type occurrences that also need to be updated.

We say that a declaration A influences a declaration B if makingA’s type more general

requires making B’s type more general. Moreover, we coin the term “type influence

flow analysis” (or just “influence analysis”) for the program analysis computing (an

over-approximation of) this information.

We implement our influence analysis by building a directed flow graph where

nodes represent declarations in the program. A flow graph is constructed so that if

declaration A influences declaration B, then the graph will contain a path from A

to B. Thus, our global “influence” relation is just the transitive closure of primitive

influences (directed edges in the flow graph) induced by the program text. For ex-

ample, an edge from variable A to variable B would be generated for an assignment

113

expression from A to B: generalizing the type of A would require B’s type to also be

generalized. Subsequent subsections provide further details.

9.3.1 Influence Nodes

Our refactoring tool generalizes interfaces by generalizing types of declarations.

Nodes in our flow graph represent declarations in the program.

The Java language constructs that can be nodes in our influence graph are given

by the syntactic category InfluenceNode:

InfluenceNode ::= MethodDecl | Variable

Variable ::= VariableDeclaration

| FieldDeclaration

| ParameterDeclaration

MethodDecl, VariableDeclaration, FieldDeclaration and ParameterDeclaration are

the syntactic entities that their names suggest, as defined in the JLS [28]. Both static

and instance fields are instances of FieldDeclarations. VariableDeclarations are

local variable declarations, which occur in blocks, method bodies, initialization state-

ments of for-loops, etc. Formal value arguments from methods and constructors are

ParameterDeclarations. Arguments in exception-catch declarations are ignored; we

found that generalizing their types would not provide significant benefit. MethodDecl

nodes in the flow graph are used to capture the influences on return types of method

declarations. Return types may need to be generalized if the types of variables occur-

ring in return statements are generalized. Generalizing the return type of a method

can influence the type of other declarations; for instance, a variable can be assigned

the result of a method invocation.

Auxiliary functions used in this presentation are defined over a language similar

to Featherweight Generic Java [32], which we will call FGJ*, rather than the full Java

114

language, in order to focus the presentation on the essential elements. FGJ*’s syntax

is presented in Figure 9.2. We skip the definitions of some syntactic elements such

as statements (s) and names of type variables (X or Y) or methods (m). We follow

the FGJ convention of using C to abbreviate the extends keyword and A denotes

the possibly empty vector A1, A2, . . . , An. Reference types allow use-site annotations,

which denote wildcard annotations; types C<? extends T> and C<T>, for example, are

expressed in the syntax as C<+T> and C<oT>. Although method invocations in the

FGJ* syntax contain specified type arguments (T) and a qualifier component (“e.”),

we allow invocations where both can be skipped.

v, w ::= + | − | ∗ | o use-site variance

T, U, S ::= X | N | R types

N ::= C<T> class types

R ::= C< v T> reference types

L ::= class C<XC U> C N { T f; M } class declaration

M ::= <XC U> T m(T x) { return s; } method declaration

e ::= x | e.f | e.<T>m(e) | new N(e) expressions

s ::= e1 = e2; | . . . statements

X, Y ::= . . . type variables

x, y ::= . . . expression variables

Figure 9.2. FGJ* Syntax

Auxiliary functions are defined in Figure 9.3. Some functions are defined only

informally because their precise definitions are either easy to determine or are not

the focus of this paper. For example, Lookup(m; e) returns the declaration of the

method being called (statically) by the method invocation m(e).3 Detailed definitions

of look up functions and other auxiliary functions that are omitted here can be found

in Chapter 6 and [32].

3Changing wildcard annotations does not affect method overloading resolution because the type
signatures of two different overloaded methods are not allowed to have the same erasure.

115

nodesAffectingType: (representative rules)

Lookup(m; e) = M
returnTypeDependsOnParams(M)

nodesAffectingType(<T>m(e)) =

∪|e|i=1nodesAffectingType(ei) ∪ {M}
(N-GenericMethod)

Lookup(m; e) = M
¬returnTypeDependsOnParams(M)

nodesAffectingType(<T>m(e)) = {M}
(N-MonoMethod)

e 6= m(e)

nodesAffectingType(e) =
accessedNodes(e)

(N-NonMethodCall)

destinationNode: (representative rules)

<S>m(e) ∈ P
Lookup(m; e) = <YC U> T m(T x) { return . . . ; }

destinationNode(ei) = xi
(D-MethodCall)

eL = eR ∈ P
varDecl(eL) = x

destinationNode(eR) = x

(D-Assignment)

“return e ;” ∈ P
enclosingMethod(e) = M

destinationNode(e) = M
(D-Return)

Lookup(m; e) = the declaration of the method being called (statically) by the invo-
cation of method m with arguments e.
returnTypeDependsOnParams(M) ≡M is a generic method with a type param-
eter X that syntactically occurs in both the return type and in an argument type.
varDecl(e) = the declaration referred to by expression e (e.g. varDecl(x.f) = dec-
laration of field f).
accessedNodes(e) = the set of declarations accessed in expression e (e.g.
accessedNodes(x.f) = {x, f}).
enclosingMethod(e) = the enclosing method of e (this function is partial).
hierarchyMethods(M) = the set of methods that either override M or are overrid-
den by M .
hierarchyParams(x) = {ith parameter of M ′ | M ′ ∈ hierarchyMethods(M)},
where x is the ith formal parameter of M .
P is the input Java program and, “A ∈ P” denotes expression or statement A syn-
tactically occurs in program P .

Figure 9.3. Auxiliary Functions

116

9.3.2 Flow Dependencies from Qualifiers

The semantics of an object-oriented language like Java entails intricate flow depen-

dencies from qualifiers. The qualifier of a Java expression is the part of the expression

that identifies the host (object, type definition, or package) from which the member

is accessed. In expression someString.charAt(0), for example, the subexpression,

someString, is the qualifier of the method invocation, charAt(0). Generalizing the

type of a qualifier of a method invocation may require generalizing the type signa-

ture of the method accessed. In particular, we need to add edges in the flow graph

from qualifiers (declarations accessed in qualifiers) to formal method arguments when

analyzing a method invocation. The following example motivates these dependencies:

interface C<X> { void foo(D<X> arg); }

interface D<Y> { int getNumber(); }

class Client {

void bar(C<String> cstr, D<String> dstr) {

cstr.foo(dstr);

}

}

The generic interfaces C and D are both safely bivariant. D is clearly bivariant

because its type parameter does not appear in the definition of D. C is bivariant

because its variance is only constrained by D, which is also bivariant.

Suppose argument arg in method foo above is not rewritable (i.e., its type re-

mains D<X>). Also, consider rewriting the Client class and assume that all method

arguments in Client are rewritable. Then it seems that the types of variables cstr

and dstr in bar are rewritable to C<?> and D<?>, respectively, by the bivariance of

both interfaces C and D. However, this would cause bar to generate the following

compilation error (modulo generated numbers):

foo(D<capture#274 of ?>) in C<capture#274 of ?>

cannot be applied to (D<capture#582 of ?>)

Effectively, the error states that the unknown type that the “?” stands for in C<?> is

not known to be the same as the unknown type that the “?” stands for in D<?>.

117

This error would have been avoided if the type of arg in method foo was rewritten.

More generally, wildcard annotations need to be added in type definitions in order for

the inferred definition-site variance to support all of the operations of the class. In

the case of interface C, an instance of type C<?> cannot access method foo unless the

type of arg is changed to D<?>.4 Therefore, we need to add an influence edge from

the qualifier cstr to the formal parameter arg of method foo.

9.3.3 Expression Targets

Expressions may access variables that are declared with types that were gener-

alized. In the refactored code, the type of an expression can change as a result

of changing the type of a variable or declaration accessed by the expression. In

the motivating example of Section 9.2, the type of parameter source changes from

List<E> to List<? extends E> in the refactored code. The return type of method

List<E>.iterator is Iterator<E>. Updating the type of source causes the type of

expression source.iterator() on line 8 to change from Iterator<E> to Iterator<?

extends E>. In turn, changing the type of expression source.iterator() requires

modifying the type of method parameter itr on line 11.

The essence of determining type influences emerging from expressions is described

by two key functions: nodesAffectingType(e) computes the set of declarations ac-

cessed in expression e that can affect the type of e. destinationNode(e) is a par-

tial function that returns the declaration that is influenced by the type of e. Fig-

ure 9.3 contains the definitions of these functions for the most important (and repre-

sentative) elements of the FGJ* syntax. Considering the motivating example, for

instance, nodesAffectingType(source.iterator()) = {source, List.iterator} and

destinationNode(source.iterator()) = WList.addAndLog.itr. Because expression

4Without changing the type of arg to D<?>, invoking foo on an instance of C<?> type checks
only if null is passed as an argument.

118

source.iterator() is the first argument in the method call to addAndLog, the first

formal parameter, itr, of addAndLog is the destination node of source.iterator().

Influence edges are added from nodes in nodesAffectingType(e) to the node returned

by destinationNode(e). These edges signal the dependencies caused by the expression

in a context such as a method invocation.

9.3.4 Dependencies from Inheritance

In Java, an overriding method in a subclass is required to have the same ar-

gument types as the overridden method in the superclass. We add corresponding

edges between method declarations in the influence flow graph so that overrides re-

lationships are preserved in the refactored code. In the motivating example, method

add in MapEntryWList (line 21) overrides method add in the super class WList. Our

analysis infers that the type of MapEntryWList.add’s argument influences the type of

WList.add’s argument, to preserve the override. In general, we add an edge from a

parameter to its corresponding parameter in an overriding method. An edge in the

reverse direction is also added, since generalizing the parameter type in the overrid-

den method requires updating the corresponding parameter’s type in the subclass to

preserve the override. Adding edges to method parameters in subclasses, however,

requires a whole-program analysis: All of the subclasses of the input class must be

known to find all of the overridding methods.

9.3.5 Algorithm

Algorithm 1 contains the pseudo-code of our algorithm for computing the type in-

fluence flow graph. The algorithm implements the analyses described in the preceding

subsections using functions defined in Figure 9.3. Given the flow graph, determining

if the type of one declaration influences another is performed by checking for existence

of a path in the graph.

119

Algorithm 1 Algorithm computing influence flow graph
Input: Java program P
Output: Flow graph G on Java declarations

// Analysis from Section 9.3.2
1: for each method call <T>m(e) ∈ P do
2: qualifierDecl← varDecl(e)
3: <YC U> T m(T x) { return . . . ; }← Lookup(m; e)
4: Add edge (qualifierDecl, xi) to G, for each xi ∈ x.
5: end for

// Analysis from Section 9.3.3
6: for each expression e ∈ P do
7: D ← destinationNode(e)
8: Add edge (N,D) to G,

for each N ∈ nodesAffectingType(e).
9: end for

// Analysis from Section 9.3.4
10: for each method declaration M ∈ P do
11: Add edge (M ′,M) to G,

for each M ′ ∈ hierarchyMethods(M).
12: for each parameter x ∈ formalParams(M) do
13: for each parameter y ∈ hierarchyParams(x) do
14: Add edge (y, x) to G
15: end for
16: end for
17: end for
18: return G

120

9.3.6 Non-rewritable Overrides

The motivating example illustrates the need to determine when types cannot be

further generalized. Clearly, types of declarations from binary files (e.g., jar files)

are not rewritable because we do not have access to the source code.5 Consider the

example interface java.util.List<E>, which declares a method iterator with return

type Iterator<E>. A class implementing List<E> cannot override iterator with a

return type of Iterator<? extends E> even though Iterator is covariant in its type

parameter. We use the influence graph to determine if a declaration can influence a

non-rewritable declaration. Any declaration that can reach a non-rewritable declara-

tion in the graph is also considered to be non-rewritable.

The motivating example shows that we must classify some declarations from source

as non-rewritable. MapEntryWList.add’s argument type, Map.Entry<K, V>, on line 21

is a parameterized type, which could be further generalized safely to Map.Entry<?

extends K, V> by the covariance of Map.Entry in its first type parameter. The argu-

ment’s type in the overridden method, WList.add, could not because it is just a type

variable (E). Generally, we classify an argument type or return type of a non-static

and non-final method not to be rewritable if the type is just a type variable.

Discussion: parent types are not rewritable. As mentioned in Section 9.2, our

analysis does not generalize parent type declarations (i.e., extends and implements

clauses). We chose not to rewrite parent types in order to improve the usability of the

refactoring tool and to simplify the analysis. We next discuss the rationale in detail.

If we were to generalize parent types, the influence analysis would be far less

intuitive to users of the refactoring tool as dependencies would no longer be traceable

by flows from only variable/member declarations. Rewriting parent types would

5Bytecode is often as malleable as source code. In principle our approach could apply to byte-
code. However, this would not address the issue of unavailable code—native code would still be
inaccessible—and, furthermore, Java bytecode does not preserve full type information for generics.

121

public interface OrderedIterator<E> extends Iterator<E>

{

E previous();

}

protected static class EntrySetIterator<K, V>

extends LinkIterator<K, V>

implements OrderedIterator<Map.Entry<K, V>>,

ResettableIterator<Map.Entry<K, V>>

{

public Map.Entry<K, V> previous() { ... }

}

EntrySetIterator<K,V>

<: ResettableIterator<Map.Entry<K,V>>
<: Iterator<Map.Entry<K,V>>.

EntrySetIterator<K,V>

<: OrderedIterator<Map.Entry<? extends K,V>>

<: Iterator<Map.Entry<? extends K,V>>.

Figure 9.4. Simplified code example from the Apache collections library at the top.
Subtyping (interface-implements) relationships at the bottom, if we annotate K with
“ ? extends” only in the parent type OrderedIterator<Map.Entry<K,V>>.

122

significantly complicate the analysis, may cause decidability issues, and would not

significantly increase the number of declarations that could be rewritten. We explain

the issues using the example in Figure 9.4, which is a simplified version of a code

segment from the Apache collections library [5].

Consider rewriting the type OrderedIterator<Map.Entry<K,V>> in the implements

clause of EntrySetIterator. We inferred that OrderedIterator is covariant in its

type. However, rewriting OrderedIterator<Map.Entry<K,V>> to OrderedIterator<?

extends Map.Entry<K,V>> in a parent type declaration is not legal in Java since wild-

cards are not allowed in the outermost type arguments in parent type declarations [28,

Section 4.3].

Now consider rewriting the first parent-interface type to OrderedIterator<Map.

Entry<? extends K,V>>. The latter is a class type and legal in a parent type decla-

ration. This causes a compile error because it implies that EntrySetIterator<K,V>

implements two different instantiations of the same generic: Iterator<Map.Entry<?

extends K,V>> and Iterator<Map.Entry<K,V>>; Figure 9.4 also shows how this was

derived.6

Another possibility is to rewrite the second parent-interface type to

ResettableIterator<Map.Entry<? extends K,V>> in addition to promoting the first

parent-interface type to OrderedIterator<Map.Entry<? extends K,V>>. Then,

EntrySetIterator<K,V> only implements a single instantiation: Iterator<Map.Entry<?

extends K,V>>. However, this is safe only if ResettableIterator is covariant in its

type parameter. If ResettableIterator is invariant, then ResettableIterator<Map.

Entry<K,V>> and ResettableIterator<Map.Entry<? extends K,V>> are not subtype-

related. We only want to replace types with more general supertypes without sacrific-

ing functionality. Hence, determining if one declared parent type can be generalized

6Interface ResettableIterator<E> also extends Iterator<E>.

123

not only depends on all the other parent types but also on whether the argument types

being generalized are passed to covariant type constructors. (Adding wildcards to a

type used to parameterize another is safe only if the parameterized type is covariant.)

Further complicating matters, it has been shown in past work [39, 61] that intro-

ducing the wildcard annotation “? super” in parent type declarations makes deciding

the subtyping relation (determining whether one given type is a subtype of another

given type) highly likely undecidable.7 Rewriting parent types would then require our

tool to check if the generalized parent type would be within a decidable fragment. We

expect that most programmers would find the dependencies involving parent types to

be severely non-intuitive. This makes it difficult for users to choose which types they

want to rewrite and the types they want preserved. To make the influence analysis

more intuitive and avoid decidability issues, we restrict rewriting to types of variable

declarations and of members of classes and interfaces.

9.4 Method Body Analysis

We can infer safe definition-site variances of type parameters solely from the in-

terfaces or member type signatures of a generic. Only analyzing type signatures,

however, is more restrictive than necessary because a programmer can specify a more

specialized type than needed. For example, a method may take a List<String> as an

argument, but never invoke a method on the argument that contains a type parame-

ter in its type signature (e.g., it may only call method size in the List interface). In

this case, the argument could be declared with the more liberal type List<?> without

7Subtyping in the presence of definition-site variance and contravariant type constructors in
parent type declarations was shown to be undecidable in [39]. [39, Appendix A] contained simple
Java programs with “? super” annotations in parent types that crashed Java 1.5 and 1.6 compilers
(javac) when checking example subtype relations. [61] identified a decidable fragment that does not
allow “? super” in parent types.

124

causing a type error, and the more liberal type would allow the method to accept

more types of list arguments. The class below presents a non-trivial example.

class Body<X extends Comparable<X>> {

int compareFirst(List<X> lx, X other) {

X first = lx.get(0);

return first.compareTo(other);

}

}

Only analyzing the interface of the Body class restricts the greatest definition-site

variance we can infer for the type parameter to be invariance. The variance of Body

is constrained by the invariance of List in the first argument of the compareFirst

method. By taking into account how variables are actually used in a program, how-

ever, we may detect when the type of a variable can be promoted to a more liberal

type. In the body of method compareFirst, only method get is invoked on the lx

argument. In the type signature of get, the type parameter of List occurs only in

the return type, a covariant position. Hence, only the covariant version of List is

required for the lx variable, and its type can be promoted to List<? extends X>.8 In

this case, the (implicitly) specified use-site variance annotation, invariance, has been

replaced with covariance. Assuming this new type for lx, we can also safely infer that

the definition-site variance of Body is now contravariance. We shall use this reasoning

for illustration next. 9

It was easy to manually inspect and determine the most liberal use-site variance

required for argument lx. The compareFirst has few lines of code and the type

expressions in the signature of the members accessed by lx are simple (i.e. do not

contain any parameterized types). This reasoning becomes more difficult and error

prone as methods become longer and more parameterized types are involved. Also,

8The type signature of List<X>.get = (int)→ X.

9The covariance of X in List<? extends X> is transformed by the contravariant method argu-
ment position that it occurs in. The other type occurrences of X in class Body also only constrain
dvar(X; Body) to contravariance.

125

changing a use-site annotation may cause a method to no longer override a previously

overridden method. Performing a method body analysis to infer use-site annotations,

thus, warrants automation. The remainder of this section presents how we generate

constraints from uses and we present sets of constraints generated from example

classes.

High-level picture. To infer use-site variance, we generate a set of constraint

inequalities between variance expressions in similar fashion to that described in Sec-

tion 4.2. Use-site variances can now vary (they integrate the result of a method body

analysis, whereas earlier they consisted of only the wildcard annotation on the type).

Hence, we add to the syntax of variance expressions a new kind of variable: If y

is a method argument declared with type C<vT> and Xi is the ith type parameter of

generic C, then uvar(Xi; C; y) denotes the inferred use-site annotation for the ith type

argument in the type of y.

Treating use-site variances as variables, in turn relaxes constraints on definition-

site variances. Consider the constraint on the inferred def-site variance of Body’s type

parameter that is generated from analyzing the type of method argument lx if we

only analyzed type signatures.

dvar(X; Body) v −⊗ var(X; List<oX>)

= −⊗ (dvar(E; List) t o)

= −⊗ dvar(E; List) = −⊗ o = o,

where E is the type parameter of List.

dvar(E; List) refers to the definition-site variance of the type parameter E of

the List interface; it can only (safely) be invariance. This upper bound constrains

dvar(X; Body) to invariance and is too restrictive considering the limited use of lx.

Our method body analysis would replace this constraint on dvar(X; Body) with the

following more relaxed one. The specified use-site annotation o has been joined with

126

uvar(E; List; lx). Constraints on this variable are generated based on the limited use

of lx. In this example, we would infer uvar(E; List; lx) = + and dvar(X; Body) =

−. Further details of the constraint generation process performed during the method

body analysis can be found in Appendix C.

dvar(X; Body) v −⊗
(
dvar(E; List) t o t uvar(E; List; lx)

)

= −⊗ (o t o t uvar(E; List; lx))

= −⊗ uvar(E; List; lx)

9.5 Type Influence Graph Optimizations

As the number of declarations in the flow graph increases, so may the number

of unmodifiable declarations. In turn, fewer declarations will be rewritten because

more paths to unmodifiable declarations will exist in the graph. To allow more

rewritable declarations to be detected, the analysis ignores (i.e. does not add to the

flow graph) declarations that are not affected by the generalizations performed by

the tool. It is safe to ignore such declarations because, even if they were rewritable,

their types would not change from rewrites performed by the refactoring tool. Con-

sidering method java.util.List.size, for example, which returns an int, adding

wildcards to any instantiation of the List interface would never cause method size

to return anything but an int. Expression l.size() returns int, whether l has type

List<Animal> or List<?>, for instance.

The influence analysis also ignores declarations of parameterized types by using

results from the definition-site and use-site variance inference. Using the inference

we separate parameterized types into two categories. A variant type is a parameteric

type C<vT>, where generic C is safely (definition-site) variant (covariant, contravari-

ant, or bivariant) in at least one of its type parameters; otherwise, we call C<vT>

an invariant type. Because Iterator is covariant in its type parameter, for exam-

127

ple, Iterator<Animal> is a variant type. Only variant types can be refactored with

wildcards, when inferring definition-site variance solely from type signatures.

The influence analysis ignores declarations of the following types. Below we list

the types and explain why they are safe to ignore.

1. Primitive types (e.g., int, char) and monomorphic class types (e.g., String,

Object). These types are not affected by adding wildcards.

2. Type variables that are declared to be the types of declarations that do not affect

method overriding. These types cannot be further generalized by wildcards. For

example, a field or local variable declared with a type that is a type variable

would not be added to the flow graph. However, as explained in Section 9.3.6,

we cannot ignore argument types and returns types of non-static and non-final

methods if they are just type variables. Declarations of these types are added

to the flow graph.

3. Parametric types that are only specified with bivariant use-site annotations

(e.g., List<?>). These types cannot be further generalized no matter the rewrites

performed.

4. Parametric types only containing specified use-site annotations that are greater-

than or equal-to (according to the ordering of Figure 2.1) the inferred use-site

annotations. The rewrites performed by the refactoring tool never cause the

type of any declaration to require a use-site annotation that is greater-than

the inferred use-site annotation. For example, assuming Iterator and List

are covariant and invariant, respectively, changing a declaration’s type from

Iterator<Animal> to Iterator<? extends Animal> will never require a wildcard

to be added to the type of a variable declared with type List<Animal>.

If a use-site annotation of a declaration was changed to a variance that is greater-

than the corresponding inferred use-site annotation, then that declaration may

128

not be able to perform an operation called in the original program. In this case,

assuming that declaration’s refactored type is a subtype of the declaration’s

original type would violate the subsumption principle, since the original type

supports an operation that the refactored type does not. In Appendix D, we

show that the types of all expressions in the refactored program can safely be

subtypes of the corresponding types in the original program. Consequently,

use-site annotations in the original program that are greater-than or equal-to

their corresponding inferred use-site annotations would never change and can

be ignored.

When performing the method body analysis to infer use-site annotations (as de-

scribed in Section 9.4), the inferred use-site annotation in an invariant type may be

greater than invariance. For example, a method argument may be declared with an

invariant type (List<Animal>), but its use of the invariant type may be limited and

may support a greater use-site annotation than specified in the original program. If

a declaration has an inferred use-site annotation that is greater than the specified

annotation, then that declaration will be added to the flow graph. As a result, per-

forming the method body analysis may cause more declarations to be added to the

flow graph than with the signature-only analysis because now some declarations of

invariant types may be added to the graph. In turn, the number of rewritable dec-

larations may decrease. The tables in Figures 9.5 and 9.7 show an instance of this

fact.

9.6 Evaluation

Our refactoring tool allows users to modularly generalize classes by selecting

which declarations (of local variables, fields, method arguments, and return types) to

rewrite. Parametric types are generalized by adding wildcard annotations based on

inferred definition-site variances.

129

Library # P-Decl # Rewritable Rewriteable Rewritten Rewritten
Total P-Decl Total P-Decl % Total Percentage

Java

classes 4900 4284 87% 569 12%

4900 4193 86% 584 12%
interfaces 170 153 90% 20 12%

170 148 87% 34 20%
total 5070 4437 88% 589 12%

5070 4341 86% 618 12%

JScience

classes 1553 1042 67% 217 14%

1553 1017 65% 229 15%
interfaces 56 53 95% 43 77%

56 53 95% 44 79%
total 1609 1095 68% 260 16%

1609 1070 67% 273 17%

Apache

classes 3357 2567 76% 565 17%

3357 2491 74% 600 18%
interfaces 46 38 83% 1 2%

46 38 83% 16 35%
total 3403 2605 77% 566 17%

3403 2529 74% 616 18%

Guava

classes 5794 3973 69% 355 6%

5794 3690 64% 384 7%
interfaces 69 57 83% 2 3%

69 56 81% 2 3%
total 5863 4030 69% 357 6%

5863 3746 64% 386 7%

Trove

classes 953 531 56% 127 13%

953 531 56% 139 15%
interfaces 0 0 0% 0 0%

0 0 0% 0 0%
total 953 531 56% 127 13%

953 531 56% 139 15%

JPaul

classes 1350 1085 80% 137 10%

1350 1067 79% 187 14%
interfaces 11 11 100% 0 0%

11 11 100% 1 9%
total 1361 1096 81% 137 10%

1361 1078 79% 188 14%

Total

classes 17907 13482 75% 1970 11%

17907 12989 73% 2123 12%
interfaces 352 312 89% 66 19%

352 306 87% 97 28%
total 18259 13794 76% 2036 11%

18259 13295 73% 2220 12%

Figure 9.5. Variance rewrite statistics for all declarations with generic types.
Rewritable decls are those that do not affect unmodifiable code, per our flow analysis.
Rewritten decls are those for which we can infer a more general type than the one
already in the code. Shaded results are for the method body analysis, unshaded for
the signature-only analysis.

130

Library Flowsto Flowsto-R
Avg. Size Avg. Size

Java

classes 61.10 1.23

61.37 1.16
interfaces 39.91 2.75

40.08 2.76
total 60.39 1.29

60.66 1.21

JScience

classes 52.04 5.42

54.59 5.49
interfaces 10.21 0.66

10.27 0.66
total 50.59 5.19

53.05 5.25

Apache

classes 119.81 0.69

122.31 0.72
interfaces 84.61 0.61

84.63 0.61
total 119.33 0.69

121.80 0.71

Guava

classes 289.27 0.97

313.20 0.93
interfaces 134.59 3.70

154.91 3.73
total 287.45 1.01

311.34 0.97

Trove

classes 13.93 0.26

13.95 0.28
interfaces N/A N/A

N/A N/A

total 13.93 0.26

13.95 0.28

JPaul

classes 15.60 0.50

15.98 0.53
interfaces 0.73 0.73

0.73 0.73
total 15.48 0.50

15.86 0.53

Total

classes 139.21 1.28

147.74 1.26
interfaces 58.36 2.23

62.44 2.24
total 137.65 1.30

146.10 1.28

Figure 9.6. The flows-to set of a declaration D is the set of all declarations that
are reachable from/influenced by D in the influence graph. Flowsto Avg. Size is the
average size of the flows-to set for all declarations in the influence graph. Flowsto-R
Avg. Size is the average size of the flows-to set for all rewritable declarations in the
influence graph.

131

Library # Rewritable Rewritable Rewritten Rewritten
V-Decls V-Decl Total V-Decl % V-Decl Total V-Decl %

Java

classes 1115 746 67% 563 50%

1115 708 63% 529 47%
interfaces 47 31 66% 20 43%

47 31 66% 21 45%
total 1162 777 67% 583 50%

1162 739 64% 550 47%

JScience

classes 717 349 49% 217 30%

720 350 49% 218 30%
interfaces 51 48 94% 43 84%

51 48 94% 43 84%
total 768 397 52% 260 34%

771 398 52% 261 34%

Apache

classes 1197 759 63% 544 45%

1201 730 61% 532 44%
interfaces 6 2 33% 1 17%

6 2 33% 1 17%
total 1203 761 63% 545 45%

1207 732 61% 533 44%

Guava

classes 1906 1088 57% 355 19%

1906 990 52% 336 18%
interfaces 11 8 73% 2 18%

11 8 73% 2 18%
total 1917 1096 57% 357 19%

1917 998 52% 338 18%

Trove

classes 367 226 62% 127 35%

367 226 62% 127 35%
interfaces 0 0 0% 0 0%

0 0 0% 0 0%
total 367 226 62% 127 35%

367 226 62% 127 35%

JPaul

classes 253 139 55% 137 54%

260 146 56% 144 55%
interfaces 0 0 0% 0 0%

0 0 0% 0 0%
total 253 139 55% 137 54%

260 146 56% 144 55%

Total

classes 5555 3307 60% 1943 35%

5569 3150 57% 1886 34%
interfaces 115 89 77% 66 57%

115 89 77% 67 58%
total 5670 3396 60% 2009 35%

5684 3239 57% 1953 34%

Figure 9.7. Variance rewrite statistics for declarations with variant types (i.e., using
generics that are definition-site variant). Rewritable decls are those that do not affect
unmodifiable code, per our flow analysis. Rewritten decls are those for which we can
infer a more general type than the one already in the code. Shaded results are for the
method body analysis, unshaded for the signature-only analysis. There are slightly
more variant decls in the method body analysis because more generics are variant.

132

Section 8.2 showed that the majority (53%) of interfaces and a large proportion

(22%) of classes in popular, large Java generic libraries are variant even though they

were not designed with definition-site variance in mind. This demonstrates the po-

tential impact of the refactoring tool if all declarations were rewritable even for users

who are not familiar with definition-site variance.

Not all declarations are rewritable, however, as discussed in previous sections.

Changing the type of one variable, for example, may require changing the type of

a method argument that is not declared in available source code. To evaluate the

potential impact of the refactoring tool, we calculated how many declarations of pa-

rameterized types are rewritable. We applied the refactoring tool to six Java libraries,

including the core Java library from Oracle’s JDK 1.6, i.e., the classes and interfaces

of java.*. The other libraries are JScience [22], a Java library for scientific comput-

ing; Guava [10], a superset of the Google collections library; GNU Trove [25]; Apache

Commons-Collection [5]; and JPaul [56], a library supporting program analysis.

The results of our experiment appear in Figures 9.5, 9.6, and 9.7. Overall, we found

significant potential for generalizing types, even under the constraints of our flow

analysis, which only allows generalization if the type in question does not influence

unmodifiable library types. When considering all parameterized types with a method

body analysis, 73% of “parameterized decls” or “p-decls” are rewritable or do not

influence an unmodifiable type. Figure 9.7’s table contains statistics for “variant

decls” or “V-Decls”, which are the subset of declarations that are declared with

variant types. The majority of variant declarations (57%) can also be rewritten.

“Rewritten P-decls” (and V-decls) are parameterized declarations that not only

can be rewritten with wildcards but were also actually generalized by the tool because

they contain a specified use-site annotation that is less general than the corresponding

inferred use-site annotation. For example, a rewritable declaration can be declared

with type, Iterator<? extends Animal>; this type does not require a rewrite, how-

133

ever, because the inferred use-site annotation, +, is not greater than the specified

use-site annotation, +.

Even in these sophisticated generic libraries written by experts, who are more

disciplined with specifying use-site annotations, we found significant potential for

generalizing types. Under the most conservative scenario (considering all param-

eterized types, examining only type signatures), 11% of all the types that appear

anywhere in these libraries are less general than they could be! This number grows

to 34% if only variant types are considered. Programmers can use our refactor-

ing to safely perform such rewrites. In these libraries, some variant types were

used with more discipline, such as interface com.google.common.base.Function<F,T>,

which is contravariant in its “argument” type F and covariant in its “return” type T.

In class com.google.common.util.concurrent.Futures, for example, for many decla-

rations of type Function, programmers specified wildcard annotations to reflect the

inferred definition-site variances (e.g., Function<? super I, ? extends O>). Other

variant types had many declarations where use-site annotations were skipped, such as

org.apache.commons.collections15.Transformer<I,O>, java.util.Iterator<E>, and

java.util.Comparator<T>.

The last two columns in the first table (Figure 9.5) list the average sizes of the

flows-to sets for parameterized declarations. A flows-to set for a declaration x is the

set of declarations that x influences according to our type influence analysis. The

flows-to sizes are quite large (146.1 on average), showing that manually checking if a

declaration’s type is rewritable is tedious and error-prone. The “Flowsto-R” column

lists the average sizes of flows-to sets only for declarations that are rewritable. As

expected, the rewritable declarations typically influence fewer declarations than non-

rewritable ones.

134

Animal first(List l) {

Iterator itr =

l.iterator();

return (Animal) itr.next();

}

Original program

⇓
Animal first(List<Animal> l) {

Iterator<Animal> itr =

l.iterator();

return itr.next(); // cast removed

}

After Kiezun et. al refactoring

⇓
Animal first(List<? extends Animal> l) {

Iterator<? extends Animal> itr =

l.iterator();

return itr.next();

}

After variance refactoring

Figure 9.8. Refactoring resulting from applying Kiezun et al.’s [41] and then our
refactoring tool

135

9.7 Comparison to Related Work

We next compare our work to past approaches that infer use-site variance anno-

tations.

Kiezun et al. [41] offered an automated approach to adding type parameters to

existing class definitions. The introduction of type parameters to a class often requires

instantiating generics or determining the type arguments to instantiate uses of a

generic. Kiezun et al.’s approach may instantiate a generic with a wildcard annotation

but only when it is required, for example, to preserve a method override. Consider a

non-generic class D that (1) extends the non-generic version of class TreeSet and (2)

contains a method addAll(Collection c1) that overrides a method in TreeSet. In

the generic version of TreeSet<E>, method addAll has signature addAll(Collection<?

extends E> c2). Class D can be parameterized with type parameter E and then can

extend the generic version, TreeSet<E>. Preserving the method override of addAll

requires changing the method argument c1’s type to Collection<? extends E>.

A new wildcard is introduced only when an existing wildcard from the original

program requires the new wildcard to preserve the ability to compile the code and

to preserve method overrides. Kiezun et al.’s approach does not infer definition-

site variance and would not introduce a wildcard if the original program does not

access a declaration with a wildcard in its type. However, Kiezun et al.’s proposed

refactoring would be a useful preprocessing step to our refactoring tool. After classes

are parameterized with type parameters, our tool can take advantage of the variance

inference to add wildcards to support greater reuse. This series of steps, for instance,

could perform the refactoring in Figure 9.8. Kiezun et al.’s approach would not add

wildcards in this example because wildcards are not required for the program to

compile. Our refactoring tool can infer that Iterator is covariant and that method

argument l is only using the covariant operations of List in foo’s method body.

136

Craciun et al. [15,21] offered an approach to inferring use-site annotations, where

a parametric type is modeled as an interval type with two bounds: A lower bound

and an upper bound for stating the types of objects that can be written to or

read from, respectively, an instance of a generic. In this calculus, supertypes have

wider ranges: List<[TL,TU]> <: List<[SL,SU]>, if SL <: TL and TU <: SU . Types

List<[T,T]>, List<[⊥,T]>, and List<[T,>]> are abbreviated as List<�T>, List<⊕T>,

and List<	T>, where ⊥ and > are subtypes and supertypes of every type, respec-

tively. Furthermore, the type of the this reference must be specified for each instance

method in a generic. An example class in their language is provided below (with the

leftmost type of each signature corresponding to the type of this):

class List<A> {

List<⊕A> | A getFst() { ... }

List<	A> | void setFst(A a) { ... }

public final Comparator<	A> comp;

}

When fields are declared with parameteric types instead of type variables, however,

Craciun et al.’s approach does not infer the greatest use-site variance that supports

all of the available operations. A contravariant instantiation of the List class above,

List<	T>, should be able to read the comp field as an instance of Comparator<	T>.

However, Craciun et al.’s type promotion technique [15, Section 4.2], would only be

able to read a Comparator<⊕T> from the comp field of a List<	T>. A Comparator<⊕T>

cannot access its compare method. Furthermore, if a method argument x of type

List<T> was used in the method body only in the assignment “Comparator<	T> c =

x.comp;”, the use-site annotation in the type of x inferred by the approach would be

invariance. Our tool, however, would rewrite the type of x with a greater (contravari-

ant) use-site annotation; more generally, our approach infers more liberal use-site

variances when fields are of parametric types.

137

CHAPTER 10

RELATED WORK

This chapter presents relevant related research and comparisons to our work. We

also discuss how this research fits in the broader field of programming languages by

explaining how this work relates to and can be applied to other subfields of program-

ming languages.

10.1 Related Research on Variance

Definition-site variance was first investigated in the late 80’s [4, 11, 18], when

parametric types were incorporated into object-oriented languages. For example, [18]

presents a proposal for making Eiffel type safe, where type attributes are used to

declare definition-site variances of generic type parameters. Definition-site variance

has experienced a resurgence in recent years, as newer languages such as Scala [51]

and C# [31] chose it as means to support variant subtyping. Perhaps surprisingly,

with such a long history, it has only recently been formalized and proven sound in a

non-toy setting [24].

Previous work focuses on the safety characteristics of definition-site variance, not

on how such variance can be inferred (other than for basic, non-recursive types).

There has never been a study of how to determine definition-site variance in the

face of recursive type definitions—which are ubiquitous in object-oriented programs.

This work is the first, to our knowledge, to determine safe definition-site variances

with recursive type definitions. Our implementation solves the problem fully, not

just for the four example cases presented in Section 3.3. Any recursive constraint on

138

definition-site variances can be encoded in the variance constraint language presented

in Section 4.2. Our constraint-solving algorithm (presented in Section 4.2) computes

the most general definition-site variances that satisfy a system of the constraint in-

equalities.

Use-site variance was introduced as structural virtual types by Thorup and Torg-

ersen [62] in response to the rigidity in class definitions imposed by definition-site

variance. A language with virtual types supports virtual type members, also known

as abstract type members in Scala [51, Section 4.3], where, in addition to fields and

methods, a type can be declared as a member of a class. Virtual type members can

be overridden or instantiated in subclasses. For example, a List class may have a

virtual type member ElemType that represents the type of the elements stored in the

list. A class IntegerList may extend List and override ElemType by setting it to

the type, IntegerList. A possible implementation of these two classes in a Java-like

language supporting virtual types is below:

class List {

type ElemType <: Object

void add(ElemType e) { ... }

ElemType get(int index) { ... }

}

class IntegerList extends List {

type ElemType == Integer;

}

Structural virtual types avoid the need to create a subclass in order to create

an instantiation of a type. They allow bindings to type members to be speci-

fied in type expressions. The IntegerList class above can be emulated with the

type expression List[ElemType==Integer]. Use-site variance is supported with type

expressions such as List[ElemType<:Object], where List[ElemType==Integer] <:

List[ElemType<:Object].

Java does not support type members but does facilitate abstract types using

generic type parameters. The concept of use-site variance from structural virtual

139

types was later applied to Java generics by Igarashi and Viroli [33, 34]. This work

formalized use-site variance by developing a formal language model that extended

Featherweight GJ with variant parametric types (VPTs). They also generalized the

notion of use-site variance to also support contravariant and bivariant use-site anno-

tations; the approach in [62] only supported covariant use-site variance.

The elegance and flexibility of the approach evoked a great deal of enthusiasm.

As a result, use-site variance was quickly introduced into Java by extending it with

wildcards [63]. Java wildcards facilitate use-site variance and support capabilities

that are not provided by VPTs. Unlike VPTs, Java wildcards do not rely on read-

and write-only semantics. For example, invoking method get() to read an element

on an instance of the VPT, List<-Number>, is prohibited because this type returns a

write-only version of List. Invoking get() on the contravariant wildcard type List<?

super Number>, however, does type check. That method invocation would be typed

with the top type, Object, since any supertype of Number is still a subtype of Object.

Also, a List<+Number> does not allow calling add() to add null to itself. A List<?

extends Number> facilitates this operation.

Java wildcards support further capabilities inspired by existential types such as

capture conversion [28, Section 5.1.10] and wildcard capture [28, Section 15.12.2.7],

where types hidden by wildcards can be opened in invocations to polymorphic meth-

ods. These further capabilities raise practical issues not addressed by VPTs. We

explained these issues in Section 5.3.

The flexibility of wildcards has also proved challenging to both researchers and

practitioners. The soundness of wildcards in Java has only recently been proven [12],

and the implementation of wildcards has been mired in issues [15,59,61]. Decidability

of subtyping with wildcards is still an open problem [29]. Subtyping with definition-

site variance was shown to be undecidable [39]. Since definition-site variance can be

emulated with use-site variance [3], subtyping with use-variance is likely also unde-

140

cidable. Greenman et al. [29] have identified a fragment of Java with wildcards for

which their algorithm for deciding subtyping is sound and complete. After surveying

13.5 millions lines of open-source Java code, they found that all surveyed code was

within that decidable fragment. This suggests that subtyping with use-site variance

is decidable for most practical Java programs.

[17] discusses the complex relationship between type-erasure and wildcards and

the difficulty of providing runtime information about generic type instantiations in

that context. [35] presents variant subtyping between path types that describe exact

and inexact qualifications/paths to nested type definitions. Let T be a path type

and C and D be class names. The exact qualification T@C accesses a class C that is a

member of the type definition for T. The inexact qualification T.C accesses a class C

that is defined at any level of nesting within T’s type definition. Exact qualifications

are invariant type constructors: T@C is a subtype of T@D only when C = D. Inexact

qualifications are covariant type constructors: T.C is a subtype of T.D when class C

extends class D and both classes are inside the definition of type T.

10.1.1 Operations Available to a Variant Type

The work of Viroli and Rimassa [65] attempts to clarify when variance is to be

used, introducing concepts of produce/consume, which are an improvement over the

read/write view. Under this view, expression variables of parameteric types (C<T>)

that only produce elements of the type argument (T) should be annotated with ‘?

extends’ (C<? extends T>). Similarly, parameteric types of variables that only con-

sume should be annotated with ‘? super’. Using that perspective, that work presents

access restrictions rules to compute the signature of members of generic definitions

given a parametric type. The producer/consumer view does not further clarify the

signature of members that include parametric types C<T> that include a class type pa-

rameter. Our approach offers a generalization and a high-level way to reason soundly

141

about the variance of arbitrary nested type expressions. The variance of member

type signatures can be used for determining which members are available to a variant

version of a type. We demonstrate this benefit with the code example in Figure 10.1.

We will explain how our approach can be used to determine which non-static methods

are available to an instance of SimpleGen<? super T>, where T is some type expres-

sion. In this case, available methods are methods that can be called with a non-null

actual argument. If calling a method with any non-null value causes a compiler (a

type checking) error, then that method is considered not to be available.

A non-null value can clearly be passed to meth1 when invoking that method on an

instance of SimpleGen<? super T>. The argument type of meth1 is just the class type

parameter E, so it is easy to determine that meth1 is available to consumers. Static

method foo1 demonstrates that meth1 is available because method call sg.meth1(str)

type checks in the body of method foo1.

The argument types in the remaining methods are parameteric types. Determining

which of the remaining methods are available to a SimpleGen<? super T> is not clear

with the producer/consumer view. The only other available method is meth3. Using

our formalism, it is easy to determine that method meth3 is available but methods

meth2 and meth4 are not. Our approach can easily determine that class type parameter

E appears contravariantly in the type signatures of meth1 and meth3. Hence, these

methods are available to a contravariant projection of SimpleGen. Method foo3 type

checks, which confirms the availability of meth3. E appears invariantly in meth2 and

covariantly in meth4; so these two methods are not available to a SimpleGen<? super

T>.

The compiler error messages that result from compiling methods meth2 and meth4

are complex. They do not provide the essence of why they do not compile because

Java does not have the notion of the variance of a position. For example, the error

message resulting from trying to compile meth4 with javac version 1.6.0 65 is below.

142

public class SimpleGen<E>

{

E elem;

SimpleGen(E elem) { this.elem = elem; }

// available to SimpleGen<? super E>

public void meth1(E arg) { }

// not available to SimpleGen<? super E>

public void meth2(Vector<E> arg) { }

// available to SimpleGen<? super E>

public void meth3(Iterator<? extends E> arg) { }

// not available to SimpleGen<? super E>

public void meth4(Comparable<? super E> arg) { }

public static void foo1(SimpleGen<? super String> sg,

String str)

{

sg.meth1(str); // OK, type checks

}

public static void foo2(SimpleGen<? super String> sg,

Vector<String> vstr)

{

sg.meth2(vstr); // error, does not type check

}

public static void foo3(SimpleGen<? super String> sg,

Iterator<? extends String> itr)

{

sg.meth3(itr); // OK, type checks

}

public static void foo4(SimpleGen<? super String> sg,

Comparable<? super String> cstr)

{

sg.meth4(cstr); // error, does not type check

}

}

Figure 10.1. Code example for investigating which non-static methods are available
to an instance of SimpleGen<? super T>, where T is some type expression. In this
example, available methods are methods that can be called with a non-null value. If
calling a method with any non-null value causes a compiler (a type checking) error,
then that method is considered not to be available.

143

meth4(java.lang.Comparable<? super capture#537

of ? super java.lang.String>)

in SimpleGen<capture#537 of ? super

java.lang.String>

cannot be applied to

(java.lang.Comparable<capture#407

of ? super java.lang.String>)

10.2 Variance and Programming Language Research

This section relates the work of this dissertation to the broader field of program-

ming languages. Specifically, we discuss other subfields of programming languages

and how they relate to the approach presented in this dissertation.

10.2.1 Nominal Subtyping and Structural Subtyping

Nominal subtyping [53, Section 19.3] is the ability to declare one type to be a

subtype of another type. Object-oriented languages facilitate nominal subtyping by

allowing one class to declare that it is extending another class or implementing an

interface. When one type declares that it is a subtype of another, the semantics of

the language should ensure that the subsumption principle is satisfied for declared

subtype relationships. In the case of Java, when class C is declared to extend another

class D, C is a subtype of D. Also, class C inherits all of the operations from class D.

Hence, nominal subtyping in Java satisfies the subsumption principle.

Structural subtyping [14] is defined using the structure of types. Languages with

structural subtyping support type constructors, also known as type operators [53,

Chapter 29]. A type constructor is a generalization of a generic and is a function that

returns types. The ref type constructor in ML [47], for example, takes in a type T

and returns a type representing a reference cell storing values of type T.

Structural subtyping does not require programmers to declare one type to be a

subtype of another. A type system supporting structural subtyping will assign vari-

144

ances to arguments of type constructors that are defined in a language specification.

Type constructors defined in the language are operators for aggregrating simpler

structures into more complex structures. Only those type constructors will support

variant subutyping. For example, a product type [53, Section 11.6], T1×T2, represents

an immutable pair of elements (x, y), where the first element x is of type T1 and the

second element y is of type T2. Since pairs are immutable, products are covariant in

their two element types. For example, if int <: real, then int× int <: real× real.

Nominal and structural subtyping each have their own advantages and disadvan-

tages. Structural subtype relationships are not required to be declared by program-

mers. This supports unanticipated use of one type as another. However, structural

subtyping only supports variant subtyping for a fixed set of type constructors that

are defined in a language specification. Structural subtyping rules do not establish

variant subtyping with user-defined type constructors.

This dissertation investigates subtyping with user-defined type constructors, such

as generics. It focuses on integrating nominal subtyping and parametric polymor-

phism. In addition, Section 6.3 provides insights that are useful for determining how

to assign variances to arguments of type constructors in general.

Nominal subtyping allows programmers to extend software without modifying

existing code by declaring that a newly created type is a subtype of an existing type.

Software extension with new data types is common in practice [55]. Variance allows

code with parameterized types to be applied to new data types. Supporting software

extension without modification is discussed further in Section 10.2.2.

Currently, most programming languages do not support both nominal and struc-

tural subtyping. Malayeri et al. [42] investigated supporting both nominal and struc-

tural subtyping in a single language called Unity. However, Unity does not support

generics. That work did not investigate variant subtyping between user-defined type

constructors. We briefly discuss what this combination looks like in Section 11.2.

145

10.2.2 Nominal Subtyping and Software Extension

Nominal subtyping is a key mechanism in object-oriented languages to designing

software entities that follow the open-closed principle [46]. This principle states that

“software entities (classes, modules, functions, etc.) should be open for extension, but

closed for modification”. In other words, software should be able to be extended with

new features without modifying existing code. Nominal subtyping supports software

extension without modifying existing code because instances of new types can be used

where instances of existing types are expected. For example in Java, a new class may

implement an interface that existing methods expect as arguments. More generally,

nominal subtyping makes it easy to extend software with new classes or datatypes

without modifying existing code.

However, adding new operations that vary by type is difficult in pure object-

oriented languages. Type-varying operations are implemented as instance methods in

classes. A method is overridden in a subclass to implement the appropriate behavior

for that subclass. Adding a new type-varying operation requires modifying existing

classes to add a new instance method that implements the operation.

In summary, object-oriented languages support adding new datatypes without

modifying existing code because of nominal subtyping. Adding type-varying opera-

tions requires modifying existing code in pure object-oriented languages.

10.2.2.1 Functional Languages

Nominal subtyping is not supported in most pure functional languages [20] such as

Haskell [38,43]. In pure functional languages, type-varying functions operate over al-

gebraic datatypes [38, Section 4.2.1] also known as variants [53, Section 11.10]. Terms

of an algebraic datatype are generated by a finite set of constructors or functions that

return terms of the datatype. For example, the following line of Haskell code declares

146

an algebraic datatype Tree to represent a binary tree of integers. Tree is declared

with two constructors, Empty and Node:

data Tree = Empty | Node Int Tree Tree

This line states that a Tree can be either of the following:

1. An empty tree represented by the constructor, Empty.

2. A node that stores an integer (an Int) and has two subtrees. The constructor,

Node, can be thought of as a function that returns a new Tree given an Int and

two instances of Tree.

Functions on algebraic datatypes are implemented using pattern matching [38,

Section 3.17], which is a case analysis on the structure of the term. The structure

of a term is determined by the constructor used to create the term. The following

function computes the height of a Tree using case analysis on the structure of the

input instance of Tree:

height :: Tree -> Int

height Empty = 0

height (Node num left right) = 1 + max (height left) (height right)

The first line declares that the type of function height is Tree -> Int. The second

line states that if an instance of Tree was generated using constructor Empty, then

height returns 0. The last line states that the height of a Tree of the form (Node num

left right) is one plus the larger of the two heights of the subtrees left and right.

As shown in the example above, type-varying functions are not members of a type,

as in object-oriented languages. Unlike the scenario with object-oriented languages,

new type-varying functions can be added without modifying existing code.

Programs in purely-functional languages depend on a closed-world assumption of

datatypes. Functions that take in an algebraic datatype expect terms to be in one of

a finite set of forms. This conflicts with the ability to apply existing code to new data

147

types, which is a goal of nominal subtyping. Adding a new constructor/data type to

an algebraic datatype requires updating every function that takes in that algebraic

datatype as an input.

In summary, software can be extended either by adding new data types or new op-

erations. Object-oriented languages support adding new data types without modify-

ing existing code, but adding new type-varying operations requires modifying existing

code. Conversely, functional languages only support adding new operations without

modifying existing code. Supporting the ability to add both data types and operations

without modifying existing code is known as the expression problem [19,54,66].

10.2.2.2 New Data Types vs. New Operations, In Practice

Robbes et al. [55] investigated which type of software extension, new datatypes

or new operations, is more common. That work analyzed software projects from the

Squeaksource repository [60] that were implemented in the purely object-oriented

language, Smalltalk [27]. More than half a billion lines of code, distributed over

2,505 projects, and 111,071 commits were analyzed. They found that both kinds

of extensions occur with roughly the same frequency. Hence, subtyping enables a

common kind of software extension without modifying existing code. They also found

that larger class hierarchies over time tend to need more operation extensions than

datatype extensions.

10.2.3 Generalized Constraints with Existential Types

Emir et al. [24] presented a calculus modeling C# with definition-site variance

and generalized constraints. Generalized constraints are lists of subtyping constraints

between arbitrarily complex types. For each subtyping constraint T <: U, T and U are

called the lower bound and the upper bound of the constraint, respectively. Also,

for each constraint, neither the lower bound nor the upper bound are required to be

a type variable. This section discusses our initial investigation of how our approach

148

to reasoning about variance may provide a general framework for reasoning about

generalized constraints. For example, we describe in Section 10.2.3.2 how to reason

about generalized constraints with existential types, which are not supported in the

formalism of [24].

A method’s generalized constraints can be used to add a locally assumed bound

on a class type parameter such as in the code example below, taken from [24, Section

1.2]. A subtype constraint T <: U is expressed in C#’s syntax as T : U.

interface ICollection<X> {

...

void Sort() where X : IComparable<X>;

bool Contains(X item) where X : IEquatable<X>;

...

}

These additional constraints are assumed to hold only for the method that declares

them. If method Sort() had a method body, then, within that method body, methods

available to instances of IComparable<X> can also be invoked on instances of X.

Calling a method with additional constraints requires that actual type arguments

satisfy the constraints. For example, method Sort() can be invoked on an instance

of ICollection<T> only if T <: IComparable<T>.

10.2.3.1 Deconstructing Generalized Constraints

Deconstructing generalized constraints is the process of inferring subtype rela-

tionships between subterms of types occurring in the generalized constraints. If the

subtype relationship T <: U holds, deconstructing this relationship investigates which

subtype relationships must have been derived in order to derive T <: U. We demon-

strate this process using the code segment in Figure 10.2. All class type parameters

in this example are implicitly declared to be invariant.

Type parameters of generic methods are declared in generalized constraints. Any

type variable in a method’s generalized constraint that is not a class type parameter

149

abstract class Exp<X> {

public abstract X Eval();

public abstract bool Eq(Exp<X> that);

/** This is a generic method with type parameters

* C and D introduced in the generalized constraint.

*/

public abstract bool EqTuple<C,D>(Tuple<C,D> that)

where Tuple<C,D> : Exp<X>;

}

class Tuple<A,B> : Exp<Pair<A,B>> // class Tuple extends Exp

{

public Exp<A> e1;

public Exp e2;

public Tuple(Exp<A> e1, Exp e2) {

this.e1 = e1; this.e2 = e2;

}

public override Pair<A,B> Eval() {

return new Pair<A,B>(e1.Eval(), e2.Eval());

}

public override bool Eq(Exp<Pair<A,B>> that) {

// Note that Tuple<A,B> <: Exp<Pair<A,B>>,

// which satisfies constraint of EqTuple.

return that.EqTuple<A,B>(this);

}

/** The generalized constraint inherited from the

* overridden method specializes to

* "where Tuple<C,D> <: Exp<Pair<A,B>>".

*/

public override bool EqTuple<C,D>(Tuple<C,D> that) {

return e1.Eq(that.e1) && e2.Eq(that.e2);

}

}

Figure 10.2. Example C# program with generalized constraints. This example is
based on an example from [24, Section 2.5].

150

is a type parameter of the method. For example, type variables C and D are type

parameters of method EqTuple in class Exp.

The above program type checks according to the typing rules in [24]. In particu-

lar, generic method Tuple.EqTuple (method EqTuple in class Tuple) type checks be-

cause of deconstructing generalized constraints. Consider the body of generic method

Tuple.EqTuple. Note the following four expression typings:

1. e1 has type Exp<A>.

2. e2 has type Exp.

3. that.e1 has type Exp<C>.

4. that.e2 has type Exp<D>.

In order for the body of Tuple.EqTuple to type check, it must be the case that Exp<C>

<: Exp<A>; otherwise, the method invocation e1.Eq(that.e1) would not type check.

Similarly, Exp<D> <: Exp because of method invocation e2.Eq(that.e2). These

two subtype relationships can be inferred from the generalized constraint “Tuple<C,D>

: Exp<Pair<A,B>>” inherited from the parent class. In order to derive Tuple<C,D>

<: Exp<Pair<A,B>>, those two subtype relationships must have been derived. [24,

Section 2.5] explains in detail how those two subtype relationships are derived from

the generalized constraint. The derivation relied on the fact that classes Exp and

Tuple are declared to be invariant in all of their type parameters.

10.2.3.2 Deconstructing Existential Subtyping

Rules for deconstructing subtyping relationships between non-existential types are

presented in [24, Section 3]. If C<X> is covariant or invariant and C<T> <: C<U>, then

rule DECON+ would conclude T <: U. Similarly, if C<X> is contravariant or invariant, rule

DECON− gives the implication C<T> <: C<U> =⇒ U <: T. We present a generalization

151

of these rules for deconstructing both existential and non-existential types using the

predicate var, our novel notion of a variance of a type defined in Figure 6.2.

Suppose List is invariant and consider the following subtype relationship:

List<? extends T> <: List<? extends U> (10.1)

Although List is invariant, we should be able to deduce T <: U because of the “?

extends” wildcard annotation. This is because both T and U occur in the same

covariant position. We apply var to provide rules Decon-B and Decon-R below.

They are powerful yet simple rules for deconstructing subtyping relations. They

deconstruct existential subtyping and non-existential subtyping, respectively. The

syntax of terms and the definition of judgments used in these are in Chapter 6.

v ≥ var(X; B)

∆ ` [U/X]B <: [U′/X]B

∆ ` v(U, U′)

(Decon-B)

v ≥ var(X; R)

∆ ` [U/X]R <: [U′/X]R

∆ ` v(U, U′)

(Decon-R)

The following example applies Decon-B to subtyping relationship (10.1). The

wildcard types in that relationship were translated to their existential versions (e.g.,

List<? extends T> is translated to ∃Y→ [⊥-T].List<Y>).

+ ≥ var(X; ∃Y→ [⊥-X].List<Y>) = +

∆ ` [T/X]∃Y→ [⊥-X].List<Y> <: [U/X]∃Y→ [⊥-X].List<Y>

∆ ` +(T, U) ≡ T <: U

Decon-B

10.2.3.3 Boundary Analysis and Deconstructing Constraints

Unfortunately, the boundary analysis described in Section 6.7.1. could no longer

be performed as a preprocessing step with deconstructing generalized constraints. For

152

example, assuming that Itr is covariant and that no bounds are ignored, then Itr<?

super T> <: Itr<? super U> =⇒ U <: T. However, if the subtype relation can ignore

useless bounds, then we cannot make safe assumptions about types in useless bounds.

The previous implication would no longer be safe to assume. If the subtype re-

lation ignores useless bounds, then by the joining of use-site and definition-site vari-

ances, lower bounds in instantiations of covariant generics are ignored. For example,

Itr<? super T> ≡ Itr<?> because applying the contravariant use-site annotation ‘?

super’ to a covariant generic Itr returns a bivariant version of the generic. Recall

that, Itr<? super T> ≡ Itr<?> denotes Itr<? super T> <: Itr<?> ∧ Itr<?> <: Itr<?

super T>. Since T was arbitrary, we could establish Itr<? super String> <: Itr<?>

<: Itr<? super Dog>. Applying rule Decon-B to this relationship would derive String

<: Dog, which is not safe.

In order for the addition of the Decon rules to be safe, var must not be conserva-

tive. var must compute the greatest possible variance safe for the subtype relation.

For example, suppose the subtype relation ignores useless bounds and the following

safe relationship is derivable:

∃Y→ [String-Object].Itr<Y> <: ∃Y→ [Dog-Object].Itr<Y>

Then it must not be the case that var(X;∃Y→ [X-Object].Itr<Y>) < ∗, since String

and Dog are not subtype related. The judgment ∗(T, U) holds for any two types T and U.

Therefore, deriving ∗(String, Dog) does not add any additional subtype assumptions.

In order for the deconstruction rules to be safe, the following converse of the

subtype lifting lemma must hold for the subtype relation without the Decon rules.

∆ ` [U/X]T <: [U′/X]T and v ≤ var(X; T) =⇒ ∆ ` v(U, U′) (10.2)

This implication does not hold for the VarJ calculus by the following counter ex-

ample. var(X;∃Y→ [X-Object].Itr<Y>) = −, and −(String, Dog), which is equivalent

153

to Dog <: String, is not derivable. The following subtype relationship is derivable in

VarJ:

[String/X](∃Y→ [X-Object].Itr<Y>)

= ∃Y→ [String-Object].Itr<Y>

<: ∃Y→ [⊥-Object].Itr<Object>

<: ∃∅.Itr<Object>

<: ∃Y→ [Dog-Object].Itr<Y>

= [Dog/X](∃Y→ [X-Object].Itr<Y>)

The judgment above violates implication (10.2).

Given the above discussion, we describe two possible language design options for

supporting generalized constraints with both definition- and use-site variance.

1. The more complex option is to have a subtype relation that ignores useless

bounds, which also requires a more complex definition of var that ignores useless

bounds. Although ignoring useless bounds allows more subtyping, performing

boundary analysis and deconstructing generalized constraints would impose the

burden of understanding boundary analysis on the programmer. For example,

in order to determine if the compiler will deduce U <: T from the constraint,

∃Y → [T-Object].Itr<Y> <: ∃Y → [U-Object].Itr<Y>, the programmer would

need to determine if T and U are useless bounds.

2. The simpler option is to have a subtype relation that never allows narrowing the

range of an existential type variable in the supertype. This does not support

as much subtyping as the first option. We expect programmers to find such

a subtype relation easier to understand. Furthermore, since type bounds are

specified by programmers, a programmer may expect the compiler to draw

conclusions about the specified bounds.

154

10.2.4 Proofs of Language Properties

Formal language definitions are detailed enough to support rigorous proofs of

language properties. Chapter 6 presented VarJ, a formal language modeling a subset

of Java with both definition-site variance and wildcards. Appendix B contains the

type soundness proof of VarJ.

Proofs of language properties are typically more detailed than mathematical proofs

in other subjects. This occurs because type systems are defined in a intuitionistic

logic, which is more widely known as constructive logic [44]. In this logic, a propo-

sition P is true if and only if there exists a proof of P . Unlike classical logic, we

cannot assume the law of the excluded middle. That is, we cannot assume P ∨ ¬P .

Constructive logic requires a proof of P or a proof of ¬P in order to prove P ∨ ¬P .

The set of true propositions in constructive logic is closed under a finite set of

axioms. Since a proposition is true iff there is a proof of it, a proposition is true

only if it can be derived from a finite set of axioms. This corresponds to how most

compilers semantically analyze programs. For example, a compiler will assign a type

to an expression only if there are rules from the language specification to support

that claim.

Language properties can be proved by structural induction on the derivation of

judgments. For example, the subtype lifting lemma in VarJ (Lemma 16 in Ap-

pendix B) is proved by structural induction on the derivation of var(X;φ), where

φ ::= B | R | ∆. For each rule that can derive the judgment, this type of proof shows

that the lemma is true when that rule is applied. If the lemma is proved for all rules,

then the lemma holds in general because a proposition can only be derived using only

the specified rules.

155

10.2.4.1 Mechanized Proofs

The appendices contains rigorous proofs of many language properties. These

proofs typically are long, tedious, and involve many cases. VarJ’s type soundness

proof in Appendix B is over 30 pages. As a result, there are many opportunities

for errors in proofs. The length and detail of the these proofs makes it difficult for

humans to find errors.

Proof assistants such as Twelf [57], Coq [45], and Isabelle [50] are software tools

that enable one to encode theory and prove properties. Mechanized proofs are proofs

that are written in a language understood by a proof assistant. Proof assistants are

designed to find errors in proofs. When a mechanized proof is verified by a proof

assistant, there is high confidence that the proof is indeed correct.

Proof assistants are a hybrid of proof checkers and automated theorem provers.

A proof checker is software that verifies proofs written in a computer language. An

automated theorem prover finds proofs of properties on their own. No automated

theorem prover can automatically finds proofs of all valid theorems, by Gödel’s in-

completeness theorems [26]. A goal of using a proof assistant is therefore to have

“easy” or routine steps of a proof be found automatically by the proof assistant.

Only “difficult steps” should require the assistance of a human.

However, proof assistants are very complex and using them remains an esoteric

skill. Although proof assistants provide some automation, mechanized proofs typi-

cally require specifying a lot more details than manually-written proofs in natural

languages [16]. These additional details usually do not contribute significant concep-

tual gain. For example, Aydemir et al. [6] showed that encoding variable binding in

the Coq proof assistant requires a substantial amount of boilerplate code and requisite

theorems for reasoning about substitution.

156

Rather than provide a longer proof than already given in Appendix B, we chose

to provide a manually written but detailed proof that focuses on important reasons

for why a theorem is true.

10.2.5 Barendregt’s Variable Convention

The Barendregt variable convention [64] is followed in the definition of VarJ.

Barendregt’s statement [7, Page 26] of the covention is below:

If M1, . . . ,Mn occur in a certain mathematical context (e.g. definition,
proof), then in these terms all bound variables are chosen to be different
from the free variables.

In the context of the rule induction, the requirements for following this convention

are the following:

1. All bound variables in a rule are distinct from all other variables.

2. No bound variable occurs free in a term in the conclusion.

Urban et al. [64] showed that following this convention ensures that predicates

or relations defined in the type system are equivariant : Changing the name of any

binder (bound variable) to a fresh name should not invalidate any derived judgment.

They also showed that following this convention implies it is safe to assume in a proof

that bound variables are distinct from any other variable occurring in the proof.

Urban et al. also showed that if the variable convention is not followed, prop-

erties resulting from the convention are not guaranteed. [64, Section 1] provides an

example of an inductively-defined relation, where its definition violates the rules of

the convention. In that work, a lemma over that relation is accompanied by a faulty

proof. A counter example to that lemma is also provided. The mistake in the proof

is that it assumes that a bound variable is distinct from all other variable names in

the proof; that assumption is not valid for the relation in their example.

157

The soundness proof of VarJ requires that Barendregt’s variable convention is

followed. For example, judgment (2) of the proof of Lemma 9, dom(∆) ∩ X = ∅, is

derived using a consequence of the variable convention. In that proof, type variables X

are binders. Because VarJ’s type system rules follow Barendregt’s variable convention,

it is safe to assume that X are distinct from other variable names such as names in

dom(∆).

In rule Var-T from Figure 6.2, dom(∆) are binders. The premise X /∈ dom(∆) is ex-

plicitly stated and is needed to follow Barendregt’s variable convention. As discussed

in Section 6.2, this premise ensures that var is an equivariant relation. However,

conditions for following variable conventions usually are not explicitly expressed in

inference rules to make important premises more overt. Such side conditions are

typically implicitly assumed in rules.

We illustrate the amount of detail added to rules by explicitly stating such side

conditions. We use the standard simple let expression, let x be e1 in e2, as an

example to show that even simple rules require significantly more detail. This let

expression is evaluated by substituting e1 for occurrences of variable x in the body

expression e2. The expression, let x be e1 in e2, is written in higher-order abstract

syntax [52] as let(e1, x.e2). Term x.e2 states that x is a bound variable and that

the scope of x is e2. The following typing and reduction (evaluation) rules below are

given in many texts and do not state the side conditions for Barendregt’s variable

convention:
Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let(e1, x.e2) : τ2
T-LET

let(e1, x.e2) 7→ [e1/x]e2
R-LET

The following rules are versions of the previous ones with judgments (side condi-

tions) that ensure that Barendregt’s variable convention is followed. By convention,

fv(t) is the set of free variables in term t.

158

x /∈ fv(Γ) x /∈ fv(e1) Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let(e1, x.e2) : τ2
T-LET*

x /∈ fv(e1)

let(e1, x.e2) 7→ [e1/x]e2
R-LET*

The starred rules explicitly specify side conditions that ensure that Barendregt’s

variable convention is followed. They also show that stating such conditions in an

already complex type system such as VarJ would add a lot of technical details without

significant conceptual gain.

159

CHAPTER 11

CONCLUSION

We conclude this dissertation by summarizing the contributions of this work and

discussing future work.

11.1 Summary of Contributions

The goal of this dissertation is to improve support for variance in programming

languages. Variance is a programming language feature that enables programmers

to safely write one piece of code that applies to multiple instantiations of a generic.

This dissertation addresses the shortcomings of current variance mechanisms by pro-

viding theoretical and practical foundations for combining definition-site and use-site

variance in a single language. This approach allows simpler type expressions than in

languages with only use-site variance. Unlike languages only supporting definition-

site variance, this approach does not require creating redundant types to facilitate

variant versions of a type.

Variance is one of the least understood programming language features. Joshua

Bloch, the architect of the Java collections library and author of a popular book [9] on

how to use advanced features in Java, has heavily criticized Java wildcards for their

complexity [8]. Although definition-site variance is arguably simpler than use-site

variance, it was purposely avoided in the Dart programming language [36, Chapter

18].

This dissertation not only generalizes but also clarifies all previous related work.

The transform operator ⊗ (Section 3.1) provides a clear way to reason about the

160

variance of nested types. The variance predicate var (Section 6.2) gives a high-level

way to reason soundly about the variance of a type. Section 6.3 explains how to assign

variances to positions in type definitions. Section 10.1.1 describes how the concepts

developed in this dissertation simplify determining which operations are available to

a variant type.

This dissertation also contributes practical foundations for supporting both definition-

and use-site variance. Section 4.4 presents a constraint-solving algorithm that com-

putes the most-general definition site variances that satisfy a system of constraint

inequalities. The algorithm is efficient and runs in polynomial time with respect

to the number of constraints. This work is the first to determine the most general

definition-site variances in the face of recursive type definitions, which are ubiquitous

in object-oriented programs. It also allows bivariant definition-site annotations, which

are not supported in C#, Scala, or any other mainstream language. Section 3.3.6

showed that bivariant annotations would allow more generics to be variant.

Because we provide clear and practical foundations for understanding, implement-

ing, and applying variance mechanism, there are plans to adopt ideas from this dis-

sertation to mainstream languages. Mozilla is implementing the constraint-solving

algorithm from 4.4 to support definition-site variance inference [48] in the Rust [49]

programming language. A proposal to add definition-site variance to Java using ideas

from this dissertation [58] was recently put forward in the Oracle Java language de-

velopment forums.

Given these plans, we expect variance mechanisms to improve in mainstream

languages. Better and easier-to-use variance mechanism should increase usage of

variance in software designs. As a result, software libraries will be developed with

interfaces that support greater reuse.

161

11.2 Future Work

This section discusses how the ideas of this dissertation can be further utilized.

Some directions for future work based on our results were already presented

throughout this dissertation. Section 10.2.3 described how our approach to reasoning

about variance may provide a general framework for reasoning about generalized con-

straints. Generalized constraints are lists of subtyping constraints between arbitrarily

complex types. Emir et al. [24] showed how to support generalized constraints with

limited type expressiveness. For example, that work did not support parametric types

with use-site variance annotations. Section 10.2.3 discussed how generalized con-

straints with existential types could be supported. Moreover, that section described

at a high-level how generalized constraints with types of any syntactic structure can

be supported. Our approach supports this generalization because our notion of a

variance of a type can applied to types of any structure.

Section 10.2.1 described and compared nominal subtyping and structural subtyp-

ing. Nominal and structural subtyping each have their own advantages and disad-

vantages. Currently, most programming languages do not support both nominal and

structural subtyping. Malayeri et al. [42] investigated supporting both nominal and

structural subtyping in a single language called Unity. However, Unity does not sup-

port generics. That work did not investigate variant subtyping between user-defined

type constructors, i.e., functions that can take in types as inputs and return types as

outputs.

Higher-order polymorphism [53, Chapter 30] refers to treating types as first class

values, i.e., the ability to write a function that takes in types as inputs and returns

a type. Hence, languages with higher-order polymorphism support user-defined type

constructors. The standard type system F ω
<: [53, Chapter 31] (called “F-omega-sub”)

162

supports structural subtyping and higher-order polymorphism.1 However, different

applications of functions defined by users are never subtype-related.

Variance annotations could be supported in a language with higher-order poly-

morphism [53, Chapter 30]. For example, one could define a function f that takes in

a type T and returns the product type T× T. Applying function f to type T in F ω
<: is

written as (f T). As discussed in Section 10.2.1, product types are covariant in their

element types. Hence, it is safe to assume that f is covariant in its single argument.

In this case, if U <: T, then, by the covariance of f, it is safe to assume (f U) <: (f

T).

A definition-site variance annotation on the argument of function f could inform

the type system and clients of the function that f is covariant in its argument type.

The type system would need to ensure that the covariant definition-site variance

annotation is safe according to the definition of f.

Another function g could use f and other user-defined type constructors in its

definition. For example, suppose h is a type constructor that is declared to be con-

travariant in its argument. Function g can be defined to take in a type T as input

and return type (f (h (f T))). Section 3.1 described how to reason about the vari-

ance of nested applications of type constructors using the transform operator ⊗. The

definition-site variance of a type constructor transforms the variance of the type argu-

ment. Using this reasoning, it is easy to determine that the variance of g’s argument

is contravariance: +︸︷︷︸
f

⊗(−︸︷︷︸
h

⊗ +︸︷︷︸
f

) = −.

Hence, a language supporting both structural subtyping and variant subtyping on

user-defined type constructors can be investigated using ideas from this dissertation.

One approach to this investigation would be to extend F ω
<: with definition-site variance

annotations. These annotations could label type arguments of functions.

1Functions that return types in Fω
<: are also called type abstractions.

163

A language supporting nominal subtyping, structural subtyping, and variant sub-

typing on user-defined type constructors can be studied, for example, by extending the

Unity calculus by Malayeri et al. [42] with generics and variant subtyping. Definition-

site variances can be declared or inferred for generic type parameters in that language

extension using ideas from this dissertation. Type expressions with use-site variance

annotations, wildcards, or existential types can also be added to this language com-

bination using ideas from this dissertation.

164

APPENDIX A

VARLANG SOUNDNESS

We prove the soundness of our treatment of VarLang sentences denotationally—

that is, by direct appeal to the original definition and axioms of use-site variance [33],

and not relative to a specific type system. At the same time, we want our proof to

apply to actual type systems. For this purpose, we try to state clearly the assumptions

we make for a type system to be able to use our approach.

Specifically, our proof is based on the following meaning of use-site variance, over

some subtyping lattice (i.e., subtyping is the partial order of the lattice):

• C<+T> =
⊔

T′<:T C<T’>

• C<-T> =
⊔

T<:T′ C<T’>

• C<*> =
⊔

T′ C<T’>

(The rules are presented for the case of a single-argument generic—for multiple ar-

guments the rules should be read to apply to the same position.) This meaning of

use-site variance is consistent with a types-as-sets treatment [33], hence the reader

can be assigning meaning using set operations in any universe of types that stand for

sets of values. The definitions essentially say that a variant type is equivalent to a

type encompassing all possible values of the appropriate invariant types. There are

two elements worth noting: First, our treatment assumes the existence of a bottom

element (since it is on a lattice). Second, the above treatment does not take into

account type identity: Use-site variant types are really pairs of a unique identifier

and their above denotation, i.e., two different occurrences of C<+T> are incompatible,

165

although they map to the same element of the lattice. We omit the identity aspect

since it only makes the discussion more tedious without affecting our argument.

The above meaning of use-site variance yields the common variance properties:

• C<T> <: C<+T> <: C<*>

• C<T> <: C<-T> <: C<*>

• T <: T′ ⇒ C<+T> <: C<+T’> ∧ C<-T’> <: C<-T>

(Note that every type expression C<*T’> refers to the same type, which we write C<*>

when more convenient.)

The denotation of use-site variance is only half the story, however. The other

important part of the semantic domain is the meaning of the variance of a position,

i.e., a formalization of the concepts “type T appears covariantly/contravariantly/bi-

variantly/invariantly in the definition of class C”. In other words, using the definition

of variance we can assign meaning to VarLang expressions of the form C<vT> but

what about VarLang expressions of the form Tv? To give such a definition we first

introduce notation allowing variance annotations, v, to also define binary predicates

on types:

• +(T1, T2) = T1 <: T2

• −(T1, T2) = T2 <: T1

• o(T1, T2) = false

• ∗(T1, T2) = true

Then, to have a type T appear in a position with variance v at the top level of the

definition of class C means that if we were to replace the occurrence of T with a T′,

such that v(T′, T) we would be defining a safe subtype of C. For instance, the reason it

is safe to consider the return type of a class’s method to be a covariant position is that

166

replacing the return type with a subtype produces a class definition that can safely

be a subtype of the original class. This “meaning” of the variance of a position is a

fairly common understanding, but we need to bind its components (e.g., subtyping,

considering a module to represent a type definition in a real language, etc.) to specific

languages and type systems.

Consider a real programming language JSCW (for “Java-Scala-C#-Whatever”)

to which we want to apply our typing framework. The JSCW language needs to have

use-site variance annotations in the type vocabulary, but may or may not already

support some use-site-variance-based reasoning—after all, this is what our approach

adds. We first introduce the idea of a variance oracle.

Definition 1. A variance oracle, O, for a program P is a finite set of oracular

assertions (or just assertions) of the form var(X; T) = v or var(X; C) = v (for a type T

or class name C), such that:

• There is a single assertion per type expression, T, and per class name, C.

• The oracle is closed: if it contains an assertion for a type expression, it also

contains assertions for all its constituent type expressions and class names ap-

pearing in them. If the oracle contains an assertion for a class name, it also

contains assertions for all type expressions appearing in the body of the class

definition.

Definition 2. We say that a set of oracular assertions is consistent with program P

and language JSCW iff taking the assertions as facts does not violate the soundness

of JSCW. That is, the type system of JSCW can consult the assertions and infer sub-

typing accordingly: if var(X; T) = v, (resp. var(X; C) = v) then for any types T1 and T2

for which v(T1, T2) (recall our treatment of variance annotations as binary predicates),

the type system can infer that T[T1/X] <: T[T2/X] (resp. C[T1/X] <: C[T2/X]). (T[T′/X] is

defined as the type expression produced by substituting T′ for X in T. C[T1/X] is the

167

name of a class with the same definition (body) as C, after substituting T′ for X in

the body.) If the JSCW type system enhanced with the set of oracular assertions in

this way still respects all its soundness properties for program P (e.g., that if P is

well-typed it will cause no semantic violation), then the set of assertions is consistent

with P and JSCW.

Next, we can state more precisely the mapping between a program in JSCW and

its corresponding sentence in VarLang .

Definition 3. A VarLang sentence S models a program P of language JSCW (pos-

sibly enhanced with oracle O) iff:

• Modules in S and classes in P are in one-to-one correspondence. (We assume

a module has the same name as the corresponding class.)

• For every class C<X> in P and every type expression, T, containing X in the

definition of C, if the occurrence of the type expression may affect the variance

of C, then sentence S contains a corresponding member T inside module C<X>

{ ... Tv... }. Conversely, every member T of the definition of a module

C in S has a corresponding syntactic source in the definition of C in P . That

is, C in program P can be defined as a JSCW syntax tree with a hole, Cdef [◦],

where ◦ appears once in the syntax tree Cdef [◦] and Cdef [T] (i.e., replacing ◦

with T in the tree) is equal to the definition of C in program P .

• The suffix variance annotations in S (i.e., the descriptions of variance positions)

are consistent with P ’s semantics under the subtyping relation and semantics of

language JSCW. That is, if S contains a module C<X> { ... Tv... } and

in program P it is v(T′, T) for some type T′ (possibly inferred with the help of

oracle O) then it would not violate the soundness of the type system of JSCW

to have Cdef [T′] <: Cdef [T].

168

This definition captures the obligations of language JSCW and its mapping to

VarLang : the mapping has to always produce VarLang sentences that fully and

accurately describe the variance information of the JSCW program (i.e., correctly

describe the variance of each position inside a class definition).

Now we can state our soundness theorem, essentially as a meta-theorem, condi-

tional on a sentence S modeling a program P .

Theorem 3. Consider a VarLang sentence S that models a JSCW program P , and

a set of variance assertions of the form var(X; T) = v and var(X; C) = v that satisfy

all constraints generated by the translation of sentence S. The following properties

hold:

• The set of variance assignments forms an oracle O.

• The module assertions, var(X; C) = v, are consistent with P and JSCW.

• The type expression assertions, var(X; T) = v, are consistent with each other

and with the module assertions, under the definition of use-site variance. That

is, any subtyping that can be inferred by consulting the oracle’s type expression

assertions is also inferrable directly from the definition of use-site variance.

In other words, the soundness claim of our approach is that it only computes

variances that are permitted under the definition of use-site variance. The expectation

is that the type system of the unknown language JSCW will remain sound under such

sound-in-principle oracular assertions.

Proof. Solving the constraints from the translation of a VarLang sentence S results

in an oracle O, since the translation of S assigns exactly one variance value to every

type expression and module name in sentence S (as can be seen by comparing the

translation rules with the grammar of S).

169

We next prove that the assertions of O are consistent with the definition of use-site

variance. We do this by considering what subtypings can be inferred by consulting

the oracle’s assertions.

The theorem trivially holds for rules 4.2 and 4.3. Since X does not occur in the

type expression of the rule, any substitution of X by two types related by variance v

will result in a subtype (the original type expression itself). Thus, we can assign any

variance to var(X; C<>) and to var(X; Y), exactly as these rules prescribe.

Rule 4.4 is similarly easy. The rule says that oracle O can assign var(X; X) to

at most +, i.e., to either + or o. Assigning o clearly produces a consistent oracle

(since the antecedent of the definition of consistency is not satisfied: o(T1, T2) = false

for every T1 and T2). So, we only need to consider +, which results in making the

definition of consistency a tautology: +(T1, T2) = T1 <: T2, and if the type system can

prove this subtyping then substituting the two types for X will clearly result in sound

subtyping.

We covered the above trivial cases in detail so that the flow of the argument

becomes clear. The real issue, however, is to prove the theorem for rule 4.5. This rule

is the essence of our variance reasoning. It effectively says that the transform operator

correctly builds the variance of composite type expressions from that of component

type expressions, and that use-site variance annotations are tantamount to a join in

the lattice.

The rule introduces N constraints, where N is the number of type parameters of C.

We reason about each constraint separately. If X does not occur in the i-th type Ti that

parameterizes C then no unsoundness is introduced by any type assignment consistent

with the rule, by the same reasoning as for rules 4.2 and 4.3, above. Therefore we only

consider the case where X occurs in Ti, and, thus, a substitution of X by a subtype may

introduce unsoundness. To simplify the presentation, we subsequently write all type

expressions for the case of a single-type-parameter generic. In the case of multiple

170

type-parameters, the argument should be understood to apply to the same parameter

position of any two expressions.

We consider all cases for the three variables on the right hand side of the constraint:

v, var(Y; C), var(X; T):

• v = ∗: the r.h.s. of the constraint is ∗, hence O may assign any variance to

var(X; C<∗>). Thus, the type system enhanced with oracle O can infer subtyping

between type expressions substituting X with any two types. This is sound, since

C<∗T[T1/X]> <: C<∗T[T2/X]>, by the standard variance properties.

• var(Y; C) = ∗: similar argument as above. The right hand side of the rule is ∗,

but any variance is safe for a composite type expression on C if the variance of

C is ∗.

• var(X; T) = o and either v = +, var(Y; C) = +, or v = +, var(Y; C) = o, or

v = −, var(Y; C) = −, or v = −, var(Y; C) = o, or v = o, var(Y; C) = +, or v =

o, var(Y; C) = −: the r.h.s. of the constraint is o, thus oracle O cannot introduce

unsoundness, since no subtyping substitution is allowed by the assertion.

• v = o and var(Y; C) = o: always safe since constraint has a r.h.s. of o.

• var(X; T) = ∗, v 6= ∗, and either var(Y; C) = + or var(Y; C) = −: the r.h.s.

of the constraint is ∗ and oracle O can assign any variance to var(X; C<vT>).

v 6= ∗ and var(Y; C) = + or var(Y; C) = − means that v t var(Y; C) = + or

vt var(Y; C) = −. But for any two types T1 and T2, T[T1/X] <: T[T2/X] (and vice

versa), since var(X; T) = ∗. Hence we have C<T[T1/X]> <: C<T[T2/X]> (because

of the covariance or contravariance of var(Y; C) taken in either direction) and

finally both C<-T[T1/X]> <: C<-T[T2/X]> and C<+T[T1/X]> <: C<+T[T2/X]>

(by the standard variance properties). Therefore, the assertion of O follows

from the variance definition.

171

• var(X; T) = ∗, var(Y; C) 6= o, and either v = + or v = −: the r.h.s. of the

constraint is ∗ and oracle O can assign any variance to var(X; C<vT>). As in

the previous case, v t var(Y; C) = + or v t var(Y; C) = −. But for any two

types T1 and T2, T[T1/X] <: T[T2/X] (and vice versa), since var(X; T) = ∗, hence

C<-T[T1/X]> <: C<-T[T2/X]> and C<+T[T1/X]> <: C<+T[T2/X]> (by the stan-

dard variance properties takein in either direction). Therefore, the assertion of

O follows from the variance definition.

We will use the same argument structure for all the individual cases below,

which contain the core (i.e., the hardest cases) of the proof, but due to the

length of the reasoning we will not belabor the inference steps, assuming that

the reader understands the argument flow from the earlier cases.

• v = +, var(Y; C) = +, var(X; T) = +: constraint r.h.s is +. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T1/X] <: T[T2/X]⇒ (by variance properties)

C<+T[T1/X]> <: C<+T[T2/X]>

• v = +, var(Y; C) = +, var(X; T) = −: constraint r.h.s is −. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T2/X] <: T[T1/X]⇒ (by variance properties)

C<+T[T2/X]> <: C<+T[T1/X]>

172

• v = +, var(Y; C) = −: constraint r.h.s is ∗. Soundness preserved since:

⊥ <: T⇒ (by variance properties)

C<+⊥> <: C<+T>

But also, for any type T’:

⊥ <: T′ ⇒ (C contravariant)

C<T’> <: C<⊥>

Therefore:

C<+T> = (by variance def)

⊔

T′<:T

C<T’> <: (by above)

C<⊥> <: (by variance properties)

C<+⊥>

Hence, all C<+T> are always subtype-related, i.e., have type C<*>.

• v = +, var(Y; C) = o, var(X; T) = +: constraint r.h.s is +. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T1/X] <: T[T2/X]⇒ (by variance properties)

C<+T[T1/X]> <: C<+T[T2/X]>

173

• v = +, var(Y; C) = o, var(X; T) = −: constraint r.h.s is −. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T2/X] <: T[T1/X]⇒ (by variance properties)

C<+T[T2/X]> <: C<+T[T1/X]>

• v = −, var(Y; C) = +: constraint r.h.s is ∗. Soundness preserved since:

T <: > ⇒ (by variance properties)

C<->> <: C<-T>

But also, for any type T’:

T′ <: > ⇒ (C covariant)

C<T’> <: C<>>

Therefore:

C<-T> = (by variance def)

⊔

T<:T′

C<T’> <: (by above)

C<>> <: (by variance properties)

C<->>

Hence, all C<-T> are the same type, i.e., C<*>.

174

• v = −, var(Y; C) = −, var(X; T) = +: constraint r.h.s is −. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T1/X] <: T[T2/X]⇒ (by variance properties)

C<-T[T2/X]> <: C<-T[T1/X]>

• v = −, var(Y; C) = −, var(X; T) = −: constraint r.h.s is +. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T2/X] <: T[T1/X]⇒ (by variance properties)

C<-T[T1/X]> <: C<-T[T2/X]>

• v = −, var(Y; C) = o, var(X; T) = +: constraint r.h.s is −. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T1/X] <: T[T2/X]⇒ (by variance properties)

C<-T[T2/X]> <: C<-T[T1/X]>

• v = −, var(Y; C) = o, var(X; T) = −: constraint r.h.s is +. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T2/X] <: T[T1/X]⇒ (by variance properties)

C<-T[T1/X]> <: C<-T[T2/X]>

175

• v = o, var(Y; C) = +, var(X; T) = +: constraint r.h.s is +. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T1/X] <: T[T2/X]⇒ (by variance of C)

C<T[T1/X]> <: C<T[T2/X]>

• v = o, var(Y; C) = +, var(X; T) = −: constraint r.h.s is −. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T2/X] <: T[T1/X]⇒ (by variance of C)

C<T[T2/X]> <: C<T[T1/X]>

• v = o, var(Y; C) = −, var(X; T) = +: constraint r.h.s is −. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T1/X] <: T[T2/X]⇒ (by variance of C)

C<T[T2/X]> <: C<T[T1/X]>

• v = o, var(Y; C) = −, var(X; T) = −: constraint r.h.s is +. Soundness preserved

since:

T1 <: T2 ⇒ (by variance of T)

T[T2/X] <: T[T1/X]⇒ (by variance of C)

C<T[T1/X]> <: C<T[T2/X]>

176

This concludes the proof for rule 4.5, which establishes that all oracle assertions

for type expressions are consistent with the definition of use-site variance. The last

piece is to prove that all module assertions, var(X; C) = v, are consistent with program

P and JSCW. Such assertions are solutions of constraints generated by rule 4.1, which

combines the constraints on type expressions with the variance of their position, to

derive the variance of an entire module definition. The consistency of the assertions

is based on the theorem’s assumption that sentence S models program P .

We want to show the consistency of a module assertion with P and JSCW, which

means that treating the assertion as a fact will not cause an unsound inference. Since

constraints generated by rule 4.1 have the variance of an entire module on their left-

hand-side, consider two substitutions C[T1/X] and C[T2/X]. These substitutions consist

of replacing X wherever it occurs in the definition of C. Consider one such occurrence

in a type expressionT, contained in module C<X> { ... Tv... }. Define Cdef [◦],

to be the syntax tree of the definition of class C with a hole in place of Tv. We again

consider all possible cases for the variables v, var(X; T) on the right hand side of the

corresponding constraint. The proof is case-by-case analogous to that for rule 4.5,

above, specialized for var(Y; C) = o. We discuss one sample case, v = +, var(X; T) = −,

which results in a constraint with an upper bound of −. For the rest of the cases, one

only needs to adapt the argument below based on the corresponding case of rule 4.5.

We have:

T1 <: T2 ⇒ (by variance of T)

T[T2/X] <: T[T1/X]⇒ (since S models P and v = +)

Cdef [T2] <: Cdef [T1]

By covering all cases and getting the same result for all constraints generated by

rule 4.1, we can combine the results for the individual Cdef [◦]s and show that C[T1/X]

177

and C[T2/X] are related in the appropriate way (since the variance of C has to satisfy

all constraints). Hence, module assertions in O are consistent with P and JSCW, and

this concludes the proof.

178

APPENDIX B

PROOF OF VARJ SOUNDNESS

The numbering of the lemmas in this appendix does not correspond to that in the

main text. Each lemma also appearing in the main text is clearly labeled with both

numbers.

Lemma 9 (Widening Range Gives Supertype). If

a. ∆ ` AL <: BL

b. ∆ ` BU <: AU

Then

1. ∆ ` ∃X→ [BL-BU].N <: ∃X→ [AL-AU].N

Proof. 1. X are binders.

2. dom(∆) ∩ X = ∅, by Barendregt.

3. ∆, X→ [BL-BU] ` AL <: BL, applied weakening lemma to (2) and (a).

4. ∆, X→ [BL-BU] ` BU <: AU , applied weakening lemma to (2) and (b).

5. ∆, X→ [BL-BU] ` BL <: ∃∅.X, by ST-LBound.

6. ∆, X→ [BL-BU] ` ∃∅.X <: BU , by ST-UBound.

7. ∆, X→ [BL-BU] ` AL <: ∃∅.X, applied ST-Tran to (3) and (5).

179

8. ∆, X→ [BL-BU] ` ∃∅.X <: AU , applied ST-Tran to (6) and (4).

9. fv(∃X→ [AL-AU].N) ∩ X = ∅

10. X ⊆ ∆, X→ [BL-BU]

11. ∆, X→ [BL-BU] ` [X/X]AL <: ∃∅.X, by (7).

12. ∆, X→ [BL-BU] ` ∃∅.X <: [X/X]AU , by (8).

13. ∆ ` ∃X→ [BL-BU].N <: ∃X→ [AL-AU].N, applied ST-Pack to (9)–(12).

Definition 4.

X→ [BL-BU] <: X→ [AL-AU] ≡ AL <: BL and BU <: AU

Lemma 10 (Corollary of Lemma 9). If

a. ∆1 <: ∆2

Then

1. ∆ ` ∃∆1.R <: ∃∆2.R

Proof. Trivial by applying Lemma 9 for the case R = N and applying ST-Refl for the

case R = X, since R = X =⇒ ∆1 = ∅ = ∆2.

Lemma 11 (Variance Ordering Implies Subtyping). Let v and w be variance anno-

tations. If

a. v ≤ w

b. ∆ ` v(B; B′)

180

Then

1. ∆ ` w(B, B′)

Proof. Trivial by definition of v(B; B′).

Lemma 12 (Negation reverses subtyping). Let v and w be variance annotations. If

a. w = ¬v = −⊗ v

Then

1. v(B, B′) ≡ w(B′, B)

Proof. This lemma is proved by inspection of the following table and seeing that for

each data row, the two rightmost entries contain equivalent formulas.

v w = −⊗ v v(B, B′) w(B′, B)

+ − +(B, B′) ≡ B <: B′ −(B′, B) ≡ B <: B′

− + −(B, B′) ≡ B′ <: B +(B′, B) ≡ B′ <: B

o o o(B, B′) ≡ B <: B′ ∧ B′ <: B o(B′, B) ≡ B′ <: B ∧ B <: B′

∗ ∗ ∗(B, B′) ≡ true o(B′, B) ≡ true

Lemma 13 (Negation preserves inequality). Let v and w be variance annotations.

v ≤ −⊗ w ⇐⇒ −⊗ v ≤ w

Proof. This lemma can be verified by inspection of a variance table that enumerates

all possible variance value assignments for v and w.

Lemma 14 (Monotonicity of ⊗). If

a. v1 ≤ v2

b. v3 ≤ v4

181

Then

1. v1 ⊗ v3 ≤ v2 ⊗ v4

Proof. This lemma can be verified by inspection of a variance table that enumerates

all possible variance value assignments for v1, . . . , v4.

The next three lemmas are mutually dependent on each other. As a result, in the

proofs of these lemmas, we can only apply these lemmas as “inductive hypotheses”

so that the proofs “terminate”. That is, we only apply these lemmas to subterms of

terms in the premises of lemmas. More specifically, the only cases where Lemma 16

depends on Lemma 15 are in proof cases Var-N and Var-R, and in both cases they

apply Lemma 15 to strict subterms of the relevant type term. Since Lemma 15’s call

to Lemma 17 does not alter the size of the type term, the proof terminates. (The

anchor cases are then the other cases in Lemma 16.) The lemmas could have been

combined into a single lemma, but this division makes the important reasoning more

apparent and the proof clearer.

Lemma 15 (Subtype Lifting – Transform). If

a. v ≤ w⊗ var(X; B)

b. ∆ ` v(U, U′)

Then

1. ∆ ` w([U/X]B, [U′/X]B)

Proof. Proof by case analysis on w:

Case 1: w= *.

1.1. ∆ ` ∗([U/X]B, [U′/X]B) = true

for case 1

Case 2: w= +.

182

2.1. v ≤ +⊗ var(X; B) = var(X; B)

2.2. ∆ ` [U/X]B <: [U′/X]B, applied Lemma 17 to (2.1) and (b) gives.

2.3. ∆ ` +([U/X]B, [U′/X]B), by (2.2).

for case 2

Case 3: w= -.

3.1. v ≤ −⊗ var(X; B)

3.2. −⊗ v ≤ var(X; B), applied Lemma 13 to (3.1).

3.3. Let v′ = −⊗ v.

3.4. v′ ≤ var(X; B), by (3.2) and (3.3).

3.5. ∆ ` v′(U′, U), applied Lemma 12 to (b) and (3.3).

3.6. ∆ ` [U′/X]B <: [U/X]B, applied Lemma 17 to (3.4) and (3.5).

3.7. ∆ ` −([U/X]B, [U′/X]B), by (3.6).

for case 3

Case 4: w= o.

4.1. v ≤ o⊗ var(X; B)

By Lemma 14, (4.1) implies:

4.2. v ≤ o⊗ var(X; B) ≤ +⊗ var(X; B), since o ≤ +.

4.3. v ≤ o⊗ var(X; B) ≤ −⊗ var(X; B), since o ≤ −.

Similar reasoning in cases 2 and 3 still apply.

183

4.4. ∆ ` +([U/X]B, [U′/X]B), applied case 2 to (4.2).

4.5. ∆ ` −([U/X]B, [U′/X]B), applied case 3 to (4.3).

4.6. ∆ ` o([U/X]B, [U′/X]B), by (4.4) and (4.5).

for case 4

All cases covered.

Lemma 16 (Subtype Lifting – Single Variable). If

a. ∆ ` v(U, U′)

and if

b. v ≤ var(X; B)

then

1. ∆ ` [U/X]B <: [U′/X]B

and if

c. v ≤ var(X; R)

then

2. ∆ ` [U/X]R ≺: [U′/X]R

and if

d. v ≤ var(X; ∆′)

then

3. ∆ ` [U/X]∆′ <: [U′/X]∆′

Proof by induction on the derivation of var(X;φ), where φ ::= B | R | ∆.

Case: VAR-XY.

184

Proof. Trivial.

Case: VAR-B.

Proof. Trivial.

Case: VAR-XX.

Proof. 1. v ≤ var(X; X) = +, by VAR-XX.

2. ∆ ` +(U, U′), applied Lemma 11 to (1) and (a).

3. ∆ ` U <: U′, by (2).

4. ∆ ` [U/X]X <: [U′/X]X, by (3).

Case: VAR-N.

Proof. 1. V T (C) = wY, premise of VAR-N.

2. v ≤ var(X; C<T>) =
dn

i=1

(
wi ⊗ var(X; Ti)

)
, by VAR-N.

3. v ≤ w⊗ var(X; T), by (2).

4. ∆ ` w([U/X]T, [U′/X]T), applied Lemma 15 to (3) and (a).

5. ∆ ` C<[U/X]T> ≺: C<[U′/X]T>, applied SD-Var to (1) and (4).

Case: VAR-R.

185

Proof. 1. v ≤ var(X; Y→ [BL-BU]) =
dn

j=1

[(
−⊗ var(X; BLj)

)
u
(
+⊗ var(X; BUj)

)]
,

by VAR-R.

We prove this case by showing that for an arbitrary i ∈ |Y→ [BL-BU]|, we have

both

∆ ` [U′/X]BLi <: [U/X]BLi

and

∆ ` [U/X]BUi <: [U′/X]BUi

2. v ≤ −⊗ var(X; BLi), by (1).

3. v ≤ +⊗ var(X; BUi), by (1).

4. ∆ ` −([U/X]BLi; [U
′/X]BLi) ≡ [U′/X]BLi <: [U/X]BLi, applied Lemma 15 to (2)

and (a).

5. ∆ ` +([U/X]BLi; [U
′/X]BLi) ≡ [U/X]BLi <: [U′/X]BLi, applied Lemma 15 to (3)

and (a).

6. ∆ ` [U′/X]BL <: [U/X]BL, since i was arbitrary.

7. ∆ ` [U/X]BU <: [U′/X]BU , since i was arbitrary.

8. ∆ ` [U/X]Y→ [BL-BU] <: [U′/X]Y→ [BL-BU], by (6) and (7).

Case: VAR-T.

Proof. 1. v ≤ var(X;∃∆′.R) = var(X; ∆′) u var(X; R), by VAR-T.

2. v ≤ var(X; ∆′), by (1).

3. v ≤ var(X; R), by (1).

186

4. ∆ ` [U/X]∆′ <: [U′/X]∆′, applied inductive hypothesis to (a) and (2).

5. ∆ ` [U/X]R ≺: [U′/X]R, applied inductive hypothesis to (a) and (3).

6. ∆ ` ∃[U/X]∆′.[U/X]R <: ∃[U′/X]∆′.[U/X]R, applied Lemma 10 to (4).

7. dom(∆′) are binders, by (1).

8. dom(∆′) ∩ dom(∆) = ∅, by Barendregt.

9. ∆, [U′/X]∆′ ` [U/X]R ≺: [U′/X]R, applied weakening lemma to (8) and (5).

10. ∆ ` ∃[U′/X]∆′.[U/X]R @: ∃[U′/X]∆′.[U′/X]R, applied SE-SD to (9).

11. ∆ ` ∃[U′/X]∆′.[U/X]R <: ∃[U′/X]∆′.[U′/X]R, applied ST-SE to (10).

12. ∆ ` [U/X]∃∆′.R <: ∃[U′/X]∆′.[U/X]R, by (6) and X /∈ dom(∆′), premise of

VAR-T case assumption.

13. ∆ ` ∃[U′/X]∆′.[U/X]R <: [U′/X]∃∆′.R, by (11) and X /∈ dom(∆′), premise of

VAR-T case assumption.

14. ∆ ` [U/X]∃∆′.R <: [U′/X]∃∆′.R, applied ST-Tran.

All cases covered for Lemma 16.

Lemma 17 (Lemma 1 from Main Text – Subtype Lifting). Let φ ::= B | R | ∆. If

a. v ≤ var(X;φ)

b. ∆ ` v(U; U′)

Then

1. ∆ ` [U/X]φ <: [U′/X]φ

187

Proof. For an arbitrary i ∈ X, we have ∆ ` [Ui/Xi]φ <: [U′i/Xi]φ by applying

Lemma 16. Since i was arbitrary, we have ∆ ` [U/X]φ <: [U′/X]φ.

Lemma 18 (Lemma 2 from Main Text – Subtyping Specializes Field Type). If

a. ` class C<vX→ [. . .]> C N . . . OK and

b. ∆ ` C<T> ≺: N′ and

c. ftype(f; N′) = U

Then

1. ftype(f; C<T>) = T

2. ∆ ` T <: U

Proof by induction on (b) and (c).

Case (SD-Var, FT-Super):

Proof.

V T (C) = vX ∆ ` v(T, U)

∆ ` C<T> ≺: C<U>︸︷︷︸
N′

(SD-Var)

CT (C) = class C<vX→ [BL-BU]> C N { S f; M }

f /∈ f

ftype(f; C<U>) = ftype(f; [U/X]N)

(FT-Super)

1. V T (C) = vX, premise of SD-Var.

2. ∆ ` v(T, U), premise of SD-Var.

3. ∆ ` C<T> ≺: C<U>, conclusion of SD-Var.

4. class C<vX→ [. . .]> C N . . ., premise of FT-Super.

188

5. f /∈ f, premise of FT-Super.

6. U = ftype(f; C<U>) = ftype(f; [U/X]N), by conclusion of FT-Super and (c).

7. Let ∆′ by the class type parameter environment X→ [. . .].

8. ∆′ ` N OK, applied inversion of W-Cls to (a).

9. vX ` N mono, applied inversion of W-Cls to (a).

10. ∆ ` [T/X]N ≺: [U/X]N, applied Lemma 17 to (9) and (2).

11. WLOG, assume N= D<V>

12. CT (D) = class D<wY→ [. . .]> C N′′ . . ., applied inversion of W-N on (8).

13. ` class D<wY→ [. . .]> C N′′ . . . OK, every class in CT is wellformed.

Applying inductive hypothesis to (13), (10), and (6) gives the next two judgments:

14. ftype(f; [T/X]N) = T

15. ∆ ` T <: U

16. ftype(f; C<T>) = ftype(f; [T/X]N) = T, applied FT-Super to (4) and (5).

17. , by (16) and (15).

Case (SD-Var, FT-Class):

Proof.

V T (C) = vX ∆ ` v(T, U)

∆ ` C<T> ≺: C<U>︸︷︷︸
N′

(SD-Var)

class C<vX→ [. . .]> C N { S f; M }

ftype(fi; C<U>) = [U/X]Si

(FT-Class)

189

1. f = fi

2. ∆ ` v(T, U), premise of SD-Var.

3. class C<vX→ [. . .]> C N { S f; M }, premise of FT-Class.

4. U = ftype(fi; C<U>) = [U/X]Si, conclusion of FT-Class.

5. vX ` Si mono, applied inversion of W-Cls to (a).

6. ∆ ` [T/X]Si <: [U/X]Si, applied Lemma 17 to (5) and (2).

7. ftype(fi; C<T>) = [T/X]Si, applied FT-Class to (3).

8. ftype(fi; C<T>) = ftype(fi; C<T>) = [T/X]Si, by (1) and (7).

9. , by (8), (6) and (4).

Case (SD-Super, *):

Proof.

class C<vX→ [. . .]> C N { S f; M } C 6= D ∆ ` [T/X]N ≺: D<U>

∆ ` C<T> ≺: D<U>︸︷︷︸
N′

(SD-Super)

1. class C<vX→ [. . .]> C N { S f; M }, premise of SD-Super.

2. ∆ ` [T/X]N ≺: D<U>, premise of SD-Super.

3. ∆ ` C<T> ≺: D<U>, conclusion of SD-Super.

4. Let ∆′ be the type parameter environment X→ [. . .] of class C.

190

5. ∆′ ` N OK, applied inversion of W-Cls to (a).

6. WLOG, assume N= K<...>

7. K ∈ dom(CT), applied inversion of W-N on (5).

8. ` CT (K) OK, every class in CT is wellformed.

Applying inductive hypothesis to (8), (2) and (c) gives the next two judgments.

9. ftype(f; [T/X]N) = T

10. ∆ ` T <: U

11. f ∈ fields(N), by (9).

12. f /∈ f, applied distinctness of fieldnames to (11) and (1).

13. ftype(f; C<T>) = ftype(f; [T/X]N) = T, applied FT-Super to (1) and (12).

14. , by (13) and (10).

for all cases of Lemma 18.

Lemma 19 (Subclassing Preserves Method Type). If

a. ` class C<vX→ [. . .]> C N { . . . M } OK and

b. mtype(m; [T/X]N) = <Y→ [BL-BU]> (U)→ U

Then

1. mtype(m; C<T>) = mtype(m; [T/X]N)

191

Proof by case analysis on m ∈M .

Case 1: m /∈M .

Proof. Applying MT-Super to (a) and the case assumption gives mtype(m; C<T>) =

mtype(m; [T/X]N).

Case 2: m ∈M .

Proof. 1. <∆> S m(S x) { return e; } ∈M , by case assumption.

2. `M OK in C, applied inversion of W-Cls to (a).

3. ` <∆> S m(S x) { return e; } OK in C, by (1) and (2).

4. override(m; N; <∆> (S)→ S), applied inversion of W-Meth to (3).

5. mtype(m; N) is defined, by (b).

6. mtype(m; N) = <∆> (S)→ S, by (4), (5), and definition override (Over-Def).

7. mtype(m; C<X>) = <∆> (S)→ S, applied MT-Class to (a) and (1).

8. mtype(m; C<X>) = mtype(m; N), by (6) and (7).

9. [T/X]mtype(m; C<X>) = [T/X]mtype(m; N), by (8).

10.

mtype(m; C<T>) = [T/X]mtype(m; C<X>)

= [T/X]mtype(m; N)

= mtype(m; [T/X]N),

by (9)

192

for case.

for all cases of Lemma 19.

Lemma 20 (Lemma 3 from Main Text – Subtyping Specializes Method Type). If

a. ` class C<vX→ [. . .]> C N { . . . M } OK and

b. ∆ ` C<T> ≺: N′ and

c. mtype(m; N′) = <Y→ [BL-BU]> (U)→ U

Then

1. mtype(m; C<T>) = <Y→ [AL-AU]> (V)→ V,

2. ∆ ` V <: U,

3. ∆ ` U <: V,

4. ∆ ` AL <: BL,

5. ∆ ` BU <: AU , and

6. var(Y; U) = var(Y; V).

Proof. Conclusions 1–5 can be derived by similar reasoning in the proof of Lemma 18.

So instead we focus on deriving conclusion (6). As in the proof of Lemma 18, we derive

conclusion (6) by induction on premises (b) and (c).

Case (SD-Var, MT-Class):

Proof.

V T (C) = vX ∆ ` v(T, T′)

∆ ` C<T> ≺: C<T′>︸ ︷︷ ︸
N′

(SD-Var)

class C<vX→ [. . .]> C N { . . . M }

<Y→ [B′L-B
′
U]> S m(S x) { return e; } ∈M

mtype(m; C<T′>) = [T′/X]<Y→ [B′L-B
′
U]> (S)→ S

(MT-Class)

193

1. V T (C) = vX, premise of SD-Var.

2. ∆ ` v(T, T′), premise of SD-Var.

3. ∆ ` C<T> ≺: C<T′>, conclusion of SD-Var.

4. class C<vX→ [. . .]> C N { . . . M }, premise of MT-Class.

5. <Y→ [B′L-B
′
U]> S m(S x) { return e; } ∈M , premise of MT-Class.

6. mtype(m; C<T′>) = [T′/X]<Y→ [B′L-B
′
U]> (S)→ S, conclusion of MT-Class.

7. U = [T′/X]S, by (6) and (c).

8. mtype(m; C<T>) = [T/X]<Y→ [B′L-B
′
U]> (S) → S, applied MT-Class to (4) and

(5).

9. Let V = [T/X]S.

10. Y are binders by (c).

11. Y ∩ fv(N′) = ∅, by Barendregt premise of (c) and (10).

12. Y ∩ fv(C<T′>) = ∅, by (11) since N′ = C<T′>.

13. Y ∩ fv(X) = ∅, by Barendregt and (10).

14. var(Y; S) = var(Y; [T′/X]S), by (12) and (13).

15. Y ∩ fv(T) = ∅, by Barendregt and (10).

16. var(Y; S) = var(Y; [T/X]S), by (15) and (12).

17. var(Y; [T′/X]S︸ ︷︷ ︸
U

) = var(Y; S) = var(Y; [T/X]S︸ ︷︷ ︸
V

), by (15) and (13).

for case

194

Case (SD-Var, MT-Super):

Proof.

V T (C) = vX ∆ ` v(T, T′)

∆ ` C<T> ≺: C<T′>︸ ︷︷ ︸
N′

(SD-Var)

class C<vX→ [. . .]> C N { . . . M } m /∈M

mtype(m; C<T′>) = mtype(m; [T′/X]N)

(MT-Super)

1. V T (C) = vX, premise of SD-Var.

2. ∆ ` v(T, T′), premise of SD-Var.

3. ∆ ` C<T> ≺: C<T′>, conclusion of SD-Var.

4. class C<vX→ [. . .]> C N { . . . M }, premise of MT-Super.

5. m /∈M , premise of MT-Super.

6. mtype(m; C<T′>) = mtype(m; [T′/X]N), conclusion of MT-Super.

7. mtype(m; C<T>) = mtype(m; [T/X]N), applied MT-Super to (4) and (5).

8. Let ∆′ be the type parameter environment X→ [. . .] of class C.

9. ∆′ ` N OK, applied inversion of W-Cls to (a).

10. vX ` N mono, applied inversion of W-Cls to (a).

11. ∆ ` [T/X]N ≺: [T′/X]N, applied Lemma 17 to (10) and (2).

12. WLOG, assume N = K<...>.

13. CT (K) = class K< . . . > C N′′ . . ., by (12) and applied inversion of W-N on (9).

195

14. ` class K< . . . > C N′′ . . . OK, by (13) and every class in CT is wellformed.

Applying the inductive hypothesis to (14), (11), and (c) gives the following two

judgments.

15. mtype(m; [T/X]N) = <Y→ [AL-AU]> (V)→ V

16. var(Y; U) = var(Y; V)

17. , by (7), (15), and (16).

Case (SD-Super, *):

Proof.

class C<vX→ [. . .]> C N { S f; M } C 6= D ∆ ` [T/X]N ≺: D<T′>

∆ ` C<T> ≺: D<T′>︸ ︷︷ ︸
N′

(SD-Super)

1. class C<vX→ [. . .]> C N { S f; M }, premise of SD-Super.

2. C 6= D, premise of SD-Super.

3. ∆ ` [T/X]N ≺: D<T′>, premise of SD-Super.

4. ∆ ` C<T> ≺: D<T′>, conclusion of SD-Super.

5. mtype(m; D<T′>) = <Y→ [BL-BU]> (U)→ U, by (c), since D<T′> = N′.

6. Let ∆′ be the type parameter environment X→ [. . .] of class C.

7. ∆′ ` N OK, applied inversion of W-Cls to (a).

196

8. WLOG, assume N = K<...>.

9. CT (K) = class K< . . . > C N′′ . . ., by (8) and applied inversion of W-N to (7).

10. ` class K< . . . > C N′′ . . . OK, by (9) and every class in CT is wellformed.

Applying the inductive hypothesis to (10), (3), and (c) gives the following two

judgments.

11. mtype(m; [T/X]N) = <Y→ [AL-AU]> (V)→ V

12. var(Y; U) = var(Y; V)

13. mtype(m; C<T>) = mtype(m; [T/X]N), applied Lemma 19 to (a) and (11).

14. , by (13), (11), and (12).

for all cases of Lemma 20.

Lemma 21 (Reflexivity of Definition-Site Subtyping).

∆ ` R ≺: R

Proof. Easy, since by ST-Refl, for any type T and any variance v, we have ∆ `

v(T, T).

Lemma 22 (Transitivity of Definition-Site Subtyping). If

a. ∆ ` R ≺: R′

b. ∆ ` R′ ≺: R′′

Then

197

1. ∆ ` R ≺: R′′

Proof. Proof by similar reasoning found in Appendix B of work by Kennedy and

Pierce [13].

Lemma 23 (Lemma 4 from Main Text – Existential subtyping to def-site subtyping).

If

a. ∆ ` ∃∆′.R′ @: ∃X→ [BL-BU].R

b. ∅ ` ∆

Then there exists T such that

1. ∆,∆′ ` R′ ≺: [T/X]R

2. ∆,∆′ ` [T/X]BL <: T

3. ∆,∆′ ` T <: [T/X]BU

4. fv(T) ⊆ dom(∆,∆′)

Proof. Proof by similar reasoning found in proof of Lemma 35 from TameFJ, with

one new induction case on (a):

Case: SE-SD.
∆, X→ [BL-BU] ` N ≺: N′

∆ ` ∃X→ [BL-BU].N @: ∃X→ [BL-BU].N
′

1. Choose T = X.

2. ∆, X→ [BL-BU] ` N ≺: N′, premise of SE-SD.

3. ∆, X→ [BL-BU] ` BL <: ∃∅.X, by ST-LBound.

4. ∆, X→ [BL-BU] ` ∃∅.X <: BU , by ST-UBound.

5. X ⊆ dom(∆, X→ [BL-BU])

198

, by (1-5).

Lemma 24 (Lemma 5 from Main Text – Subtyping to existential subtyping). If

a. ∆ ` T <: T′

b. ∅ ` ∆ OK

Then

1. ∆ ` ubound∆(T) @: ubound∆(T′)

Proof. Proof by similar reasoning found in proof of Lemma 17 from TameFJ.

Lemma 25 (Subtitution Preserves Subtyping). If

a. ∆ = ∆1, X→ [BL-BU],∆2

b. ∆′ = [T/X](∆1,∆2)

c. fv(T) ⊆ dom(∆′)

d. ∆′ ` T <: [T/X]BU

e. ∆′ ` [T/X]BL <: T

and if

f. ∆ ` R ≺: R′

then

1. ∆′ ` [T/X]R ≺: [T/X]R′

and if

g. ∆ ` B @: B′

199

then

2. ∆′ ` [T/X]B @: [T/X]B′

and if

h. ∆ ` B <: B′

then

4. ∆′ ` [T/X]B <: [T/X]B′

Proof by induction on ∆ ` φ <<: φ′, where “φ <<: φ′” ≡ (φ ≺: φ′ OR φ @:

φ′ OR φ <: φ′) and φ ::= R | B.

Case: SD-Super

Proof.

class C<vY→ [. . .]> C N { . . . } C 6= D ∆ ` [U/Y]N ≺: D<V>

∆ ` C<U> ≺: D<V>

(SD-Super)

1. class C<vY→ [. . .]> C N { . . . }, premise of SD-Super.

2. ∆ ` [U/Y]N ≺: D<V>, premise of SD-Super.

3. ∆ ` C<U> ≺: D<V>, conclusion of SD-Super.

4. ∆′ ` [T/X][U/Y]N ≺: D<[T/X]V>, applied inductive hypothesis to (2) and (a-e).

5. Y are binders by (1).

6. Y ∩ (fv(T) ∪ X) = ∅, applied Barendregt to (5).

7. ` class C<vY→ [. . .]> C N { . . . } OK, applied every class is wellformed by

to (1).

200

8. Y→ [. . .] ` N OK, applied inversion of W-Cls to (7).

9. fv(N) ⊆ Y, by (8).

10. fv(N) ∩ X = ∅, by (9) and (6).

11. [T/X][U/Y]N = [[T/X]U/Y]N, by (10) and (6).

12. ∆′ ` [[T/X]U/Y]N ≺: D<[T/X]V>, (4) and (11).

13. C 6= D, premise of SD-Super case assumption.

14. ∆′ ` C<[T/X]U> ≺: D<[T/X]V>, applied SD-Super to (1), (13), and (12).

for case

Case SD-Var:

Proof.

V T (C) = vY ∆ ` v(U, V)

∆ ` C<U> ≺: C<V>

(SD-Var)

1. V T (C) = vY, premise of SD-Var.

2. ∆ ` v(U, V), premise of SD-Var.

3. ∆ ` C<U> ≺: C<V>, conclusion of SD-Var.

4. ∆′ ` v([T/X]U, [T/X]V), applied inductive hypothesis to (2) and (a-e).

5. ∆ ` C<[T/X]U> ≺: C<[T/X]V>, applied SD-Var to (1) and (4).

for case

Case SE-SD:

201

Proof.

∆1, X→ [BL-BU],∆2,∆3 ` N ≺: N′

∆1, X→ [BL-BU],∆2 ` ∃∆3.N @: ∃∆3.N
′

(SE-SD)

1. ∆1, X→ [BL-BU],∆2,∆3 ` N ≺: N′, premise of SE-SD.

2. ∆1, X→ [BL-BU],∆2 ` ∃∆3.N @: ∃∆3.N
′, conclusion of SE-SD.

3. fv(T) ⊆ dom(∆′) ⊆ dom(∆′,∆3), by (c).

4. dom(∆3) ∩ dom(∆1, X→ [BL-BU],∆2) = ∅, by Barendregt premise of SE-SD.

5. dom(∆3) ∩ dom([T/X]∆1, [T/X]∆2) = ∅, by (4).

6. dom(∆3) ∩ X = ∅, by (4).

7. [T/X]∆3 = ∆3, by (6).

8. Let ∆′′ = ∆1, X→ [BL-BU],∆2,∆3.

9. Let ∆′′′ = [T/X]∆1, [T/X]∆2, [T/X]∆3.

10. fv(T) ⊆ dom(∆′) ⊆ dom(∆′,∆3) = dom(∆′′′), by (9) and (7).

11. dom(∆3) ∩ dom(∆′) = ∅, by (5).

12. ∆′,∆3︸ ︷︷ ︸
∆′′′

` T <: [T/X]BU , applied weakening lemma to (11) and (d).

13. ∆′′′ ` [T/X]BL <: T, applied weakening lemma to (11) and (e).

14. [T/X](∆1,∆2,∆3) ` [T/X]N ≺: [T/X]N′, applied inductive hypothesis to (9),

(10), (12), (13), and (1).

15. [T/X](∆1,∆2) ` ∃[T/X]∆3.[T/X]N @: ∃[T/X]∆3.[T/X]N
′, applied SE-SD to (14).

202

16. [T/X](∆1,∆2) ` [T/X]∃∆3.N @: [T/X]∃∆3.N
′, by Barendregt since dom(∆3) are

binders.

for case

Case ST-LBound:

Proof.

(∆1, X→ [BL-BU],∆2)(Y) = [BL − BU]

∆1, X→ [BL-BU],∆2 ` BL <: ∃∅.Y

(ST-LBound)

1. (∆1, X→ [BL-BU],∆2)(Y) = [BL − BU], premise of ST-LBound.

2. ∆1, X→ [BL-BU],∆2 ` BL <: ∃∅.Y, conclusion of ST-LBound.

Completing proof by case analysis on Y ∈ X.

Case 1: Y ∈ X.

1.1. Y = Xi, for some i, by case assumption

1.2. [T/X]∃∅.Y = [T/X]∃∅.Xi = Ti, by (1.1).

1.3. Y→ [BL-BU] = Xi → [BLi
-BUi

], by (1.1) and (1).

1.4. ∆′ ` [T/X]BLi
<: Ti, by (e).

1.5. ∆′ ` [T/X]BL <: [T/X]∃∅.Y, by (1.4), (1.3), and (1.2).

for case 1

Case 2: Y /∈ X and Y ∈ dom(∆1,∆2).

2.1. (∆1,∆2)(Y) = [BL − BU], by (1) and case assumption.

2.2. [T/X](∆1,∆2)(Y) = [[T/X]BL − [T/X]BU], by (2.1).

203

2.3. [T/X](∆1,∆2) ` [T/X]BL <: ∃∅.Y, applied ST-LBound to (2.2).

2.4. [T/X]∃∅.Y = ∃∅.Y, by case assumption.

2.5. [T/X](∆1,∆2) ` [T/X]BL <: [T/X]∃∅.Y, by (2.3) and (2.4).

for case 2

Case 3: Y /∈ X and Y /∈ dom(∆1,∆2).

3.1. Y /∈ dom(∆1, X→ [BL-BU],∆2), by case assumption.

3.2. contradiction, by (3.1) and (1).

for case 3

We completed the case analysis on Y ∈ X and completed the proof for the ST-

LBound case of this lemma.

Case ST-UBound:

Proof. Similar reasoning in the proof for the ST-LBound case proves the lemma for

this case. for case

Case SE-Pack

Proof.

dom(∆3) ∩ fv(∃Y→ [AL-AU].N) = ∅ fv(U) ⊆ dom(∆1, X→ [BL-BU],∆2,∆3)

∆1, X→ [BL-BU],∆2,∆3 ` [U/Y]AL <: U

∆1, X→ [BL-BU],∆2,∆3 ` U <: [U/Y]AU

∆1, X→ [BL-BU],∆2 ` ∃∆3.[U/Y]N @: ∃Y→ [AL-AU].N

(SE-Pack)

1. dom(∆3) ∩ fv(∃Y→ [AL-AU].N) = ∅, premise of SE-Pack.

204

2. fv(U) ⊆ dom(∆1, X→ [BL-BU],∆2,∆3), premise of SE-Pack.

3. ∆1, X→ [BL-BU],∆2,∆3 ` [U/Y]AL <: U, premise of SE-Pack.

4. ∆1, X→ [BL-BU],∆2,∆3 ` U <: [U/Y]AU , premise of SE-Pack.

5. ∆1, X→ [BL-BU],∆2 ` ∃∆3.[U/Y]N @: ∃Y→ [AL-AU].N, conclusion of SE-Pack.

6. fv(T) ⊆ dom([T/X](∆1,∆2)) ⊆ dom([T/X](∆1,∆2,∆3)), by (c).

7. dom([T/X]∆3)∩ dom([T/X](∆1,∆2)) = ∅, by Barendrengt premise of SE-Pack.

8. [T/X](∆1,∆2,∆3) ` T <: [T/X]BU , applied weakening lemma to (7) and (d).

9. [T/X](∆1,∆2,∆3) ` [T/X]BL <: T, applied weakening lemma to (7) and (e).

10. [T/X](∆1,∆2,∆3) ` [T/X][U/Y]AL <: [T/X]U, applied inductive hypothesis to

(6-9) and (3).

11. [T/X](∆1,∆2,∆3) ` [T/X]U <: [T/X][U/Y]AU , applied inductive hypothesis to

(6-9) and (4).

12. dom(∆3) = dom([T/X]∆3)

13. Y ∩ X = ∅, by Barendregt, since Y are binders.

14.

fv(∃Y→ [[T/X]AL-[T/X]AU].[T/X]N)

= fv([T/X]∃Y→ [AL-AU].N)

= [T/X]fv(∃Y→ [AL-AU].N)

⊆ fv(T) ∪ fv(∃Y→ [AL-AU].N)

205

15.

fv(T) ∩ dom([T/X]∆3)

= fv(T) ∩ dom(∆3) by (12)

⊆ dom(∆1,∆2) ∩ dom(∆3) by (c)

= ∅ by Barendrengt premise of SE-Pack

16.

dom([T/X]∆3) ∩ fv(∃Y→ [[T/X]AL-[T/X]AU].[T/X]N)

⊆ dom(∆3) ∩
[
fv(T) ∪ fv(∃Y→ [AL-AU].N)

]
by (9) and (10)

=
[
dom(∆3) ∩ fv(T)

]
∪
[
dom(∆3) ∩ fv(∃Y→ [AL-AU].N)

]

= ∅ ∪ ∅ by (15) and (1)

17.

fv([T/X]U) ⊆ fv(T) ∪
[
fv(U)− X

]

⊆ dom(∆1,∆2) ∪
[
fv(U)− X

]
by (c)

⊆ dom(∆1,∆2) ∪
[
dom(∆1, X→ [BL-BU]∆2,∆3)− X

]
by (2)

= dom(∆1,∆2,∆3) = dom(([T/X])∆1,∆2,∆3)

18. (fv(T) ∪ X) ∩ Y = ∅, by Barendregt, since Y are binders.

19. [T/X][U/Y]AL = [[T/X]U/Y][T/X]AL, by (18).

20. [T/X][U/Y]AU = [[T/X]U/Y][T/X]AU , by (18).

21. [T/X](∆1,∆2,∆3) ` [[T/X]U/Y][T/X]AL <: [T/X]U, by (19) and (10).

206

22. [T/X](∆1,∆2,∆3) ` [T/X]U <: [[T/X]U/Y][T/X]AU , by (20) and (11).

23. [T/X](∆1,∆2) ` ∃[T/X]∆3.[[T/X]U/Y]N @: ∃Y→ [[T/X]AL-[T/X]AU].[T/X]N,

applied SE-Pack to (16), (17), (21), and (22).

24. [T/X](∆1,∆2) ` [T/X]∃∆3.[U/Y]N @: [T/X]∃Y→ [AL-AU].N, by (23) and (18).

for case.

Proofs for remaining cases are all trivial.

for lemma.

Lemma 26 (Invariance Fixes Type Instantiations). If

a. var(Y; R) = o

b. ∆ ` R1 ≺: [T/Y]R

c. ∆ ` R2 ≺: [U/Y]R

Then

1. ∆ ` o(T, U)

Proof. By standard induction on (b) and (c).

Lemma 27 (Invariance Fixes Type Unification Position). If

a. var(Y; R3) = o

b. ∆ ` R2 ≺: [U/Y]R3

c. ∆ ` R1 ≺: [T/X]R2

d. ∆ ` R1 ≺: [V/Y]R3

e. (fv(T) ∪ X) ∩ Y = ∅

207

f. fv(R3) ∩ X = ∅

Then

1. ∆ ` o(V, [U/X]U)

Proof. 1. ∆ ` [T/X]R2 ≺: [T/X][U/Y]R3, applied Lemma 25 to (b).

2. [T/X][U/Y]R3 = [[T/X]U/Y]R3, by (e) and (f).

3. ∆ ` [T/X]R2 ≺: [[T/X]U/Y]R3, by (1) and (2).

4. ∆ ` R1 ≺: [[T/X]U/Y]R3, applied Lemma 22 to (c) and (3).

5. ∆ ` o(V, [T/X]U), applied Lemma 26 to (a), (d), and (4).

Lemma 28 (Lemma 7 from Main Text – Subtyping Preserves matching (receiver)).

If

a. ∆ ` ∃∆1.N1 @: ∃∆2.N2

b. mtype(m; N2) = <Y2 → [B2L-B2U]> (U2)→ U2

c. mtype(m; N1) = <Y1 → [B1L-B1U]> (U1)→ U1

d. sift(R; U2; Y2) = (R′; U′2)

e. match(R′; U′2; P; Y2; T)

f. ∅ ` ∆ OK

g. ∆,∆′ ` T OK

Then

1. sift(R; U1; Y1) = (R′; U′1)

208

2. match(R′; U′1; P; Y1; T)

Proof. Proof by similar reasoning as in the proof of lemma 36 of TameFJ exception

noting that R′ is returned by both sift(R; U2; Y2) and sift(R; U1; Y1) because of conclusion

(6) of Lemma 20.

Lemma 29 (Subtyping Preserves matching (arguments)). If

a. ∆ ` ∃∆1.R1 @: ∃∆2.R2

b. match(sift(R2; U; Y); P; Y; T)

c. ∆2 = Z→ [BL-BU]

d. fv(U) ∩ Z = ∅

e. ∅ ` ∆ OK

f. ∆ ` ∃∆1.R1 OK

g. ∆ ` P OK

Then there exists U′ such that: Then

1. match(sift(R1; U; Y); P; Y; [U′/Z]T)

2. ∆,∆′ ` [U′/Z]BL <: U′

3. ∆,∆′ ` U′ <: [U′/Z]BU

4. R1 ≺: [U′/Z]R2

5. fv(U′) ⊆ dom(∆,∆′)

Proof. Proof by similar reasoning as in the proof of lemma 37 of TameFJ.

Theorem 4 (Progress). For any ∆, e, T, if ∅; ∅ ` e : T | ∆, then either e 7→ e′ or

there exists a v such that e = v.

209

Proof. Proof by similar reasoning as in the proof of the Progress Theorem of TameFJ.

Theorem 5 (Subject Reduction). For any e, e′, T, if ∅; ∅ ` e : T | ∅ and e 7→ e′,

then ∅; ∅ ` e′ : T | ∅.

Proof. The proof of this theorem is similar to the proof of the Subject Reduction

Theorem of TameFJ except for a technicality with match that is related to the issue

discussed in Section 6.5.3. The TameFJ soundness proof section did not specify

that the match relation is a function. However, the proof relied on match being a

function, where the fifth argument (the inferred type actuals) is an output or result

of the first four arguments. On p. 73 of the full version of [12], consider judgment 54

of the TameFJ Subject Reduction Proof for the case where rule R-INVK was applied.

Judgment 54 is repeated below for quick lookup:

T = [Us/Xs]T′′

A brief explanation of the derivation of judgment 54 is below:

1. A premise of rule R-INVK is

match(sift(N; U; Y); P; Y; T)

Since the proof case that judgment 54 occurs in assumes rule R-INVK was applied,

the premise above is assumed to hold.

2. The authors of [12] applied lemma 37 of that paper to derive

match(sift(N; U; Y); P; Y; [Us/Xs]T′′)

210

3. They assumed the match relation is a function, where the fifth argument of

match is the only output of the function. Since the input arguments in the

above two judgments are the same, the following judgment holds:

T = [Us/Xs]T′′

To understand the importance of judgment 54, the judgment

match(sift(N; U; Y); P; Y; [Us/Xs]T′′)

was used to type the method invocation expression:

v.<P>m(v)

However, the evaluation step

v.<P>m(v) 7→ [v/x, v/this, T/Y]e0

was performed under the premise

match(sift(N; U; Y); P; Y; T)

In order, for the subject reduction theorem to hold for TameFJ, it must be the

case that the inferred type actuals, [Us/Xs]T′′, used to assign a type to the method

invocation expression, must be the same as or equivalent to the inferred type actuals,

T, used to evaluate (perform on a reduction step on) the method invocation. Two

types are equivalent if and only if they are subtypes of each other. Although our

type system allows variant type constructors, Lemmas 26 and 27 guarantee that our

definition of match ensures the set of output types for given inputs are equivalent.

211

APPENDIX C

METHOD BODY ANALYSIS: CONSTRAINTS ON
USE-SITE ANNOTATIONS

The heart of method body analysis is the production of constraints bounding

use-site variances, uvar(Xi; C; y). These bounds ensure that the inferred use-site

annotation supports the limited use of y in its enclosing method body. The bounds

on use-site variances can be more relaxed than the bounds on definition-site variances.

A definition-site variance is constrained by the variance of all members of a generic.

A use-site variance for a method argument y can be more general because it needs to

be constrained by the variance of only those members accessed by y in the method

body.

Consider argument source of method addAll from line 7 in the motivating exam-

ple (Figure 9.1 in Section 9.2). The type of source is List<oE>. When the method

body analysis is performed, source’s inferred use-site annotation is the value of the

expression: dvar(E; List)t ot uvar(E; List; source). The definition-site variance and

specified use-site variance were further relaxed by uvar(E; List; source) to take ad-

vantage of the fact that not all members of List were accessed by source in the

method body of addAll. We computed that only a covariant version of List was

required by source; formally, we computed uvar(E; List; source) = +. In this case,

uvar(E; List; source) was only constrained by the variance of the type signature of

method List.iterator. It was the only method from List used and no other uses

of source occurred in the method body. As a result, the only upper bound on

212

uvar(E; List; source) is var(E; Iterator<E>) = +.1 This is the same upper bound on

dvar(E; List) that results from List.iterator alone, but dvar(E; List) also needs to

respect other constraints.

Figure C.1 contains the constraint generation rules for uvars and auxiliary func-

tions. The first three (MB) rules constrain uvar(Y; C; x) by the variance of Y in the

(non-static) members of C accessed by x in its enclosing method body. A field read

is only a covariant use of its type T; var(Y; T) was not transformed by + in rule MB-

FieldRead because + is the identity element on the transform operator ⊗. Note that

this constraint also occurs for definition-site variances; see rule W-Cls from Figure 6.3

for details.

Constraints with uvars are generated from method arguments using the auxiliary

function localvar. localvar may return an expression with a uvar to signal that a use-

site annotation can be inferred. localvar is not recursive and uvars are only generated

for top-level use-site annotations. We chose not to generalize use-site annotations in

nested types for simplicity.

Section 9.4 did not need to mention localvar to describe the method body analysis

at a high level. However, the actual upper bound generated for dvar(X; Body) is −⊗

localvar(X; List<oE>; lx) = −⊗
(
dvar(E; List) t o t uvar(E; List; lx)

)
, so the initial

upper bound expression simplifies to the expression previously stated.

localvar returns an expression with a uvar for a method argument x if it is declared

with a parametric type and if it satisfies hierarchyMaybeGeneralized(x). hierarchy-

MaybeGeneralized(x) is imposed to help preserve method overrides in refactored code.

Use-site annotations in each position must be the same in overridden/overriding meth-

ods. We do not infer use-site annotations if an overridden method is not available

from source. We also do not infer use-site annotations for x if one of its corresponding

1Return types are in a covariant position.

213

uvar constraint generation: (representative rules)

M = enclosingMethod(x)
“x.f” ∈M LookupType(f) = T

¬isWriteTarget(x.f)

uvar(Y; C; x) v var(Y; T)
(MB-FieldRead)

M = enclosingMethod(x)
“x.f = e” ∈M

LookupType(f) = T

uvar(Y; C; x) v −⊗ var(Y; T)
(MB-FieldWrite)

M = enclosingMethod(x)
“x.<S>m(e)” ∈M

Lookup(m; e) = <YC U> T m(T x) { return s; }

uvar(Y; C; x) v
|U|l

i=1

(
−⊗ var(Y; U)

)
u var(Y; T)

|T|l

i=1

(
−⊗ localvar(Y; Ti; xi)

)

(MB-MethodCall)

y ∈ hierarchyParams(x)
LookupType(y) = C<vT>

uvar(Y; C; x) v localvar(Y; C<vT>; y)

(MB-Override)

M = enclosingMethod(x)
“y = x” ∈M LookupType(y) = C<vT>

Y = ith type parameter of C

uvar(Y; C; x) v inferredUseSite(y; v; C; i)

(MB-AssignToGeneric-Same)

M = enclosingMethod(x)
“y = x” ∈M

LookupType(y) = D<vT> C 6= D

uvar(Y; C; x) v dvar(Y; C)
(MB-AssignToGeneric-Base)

localvar(Y; T; x) =

d|T|
i=1

(
inferredUseSite(x; v; C; i) ⊗ var(Y; Ti)

)

, if T = C<vT> and hierarchyMaybeGeneralized(x)

var(Y; T), otherwise

inferredUseSite(y; v; C; i) =

dvar(Xi; C) t vi t uvar(Xi; C; y) ,

if y is a method argument

dvar(Xi; C) t vi, otherwise,

where Xi is the ith type parameter of C.

hierarchyMaybeGeneralized(x) ≡ ∀y ∈ hierarchyParams(x), y is declared in avail-
able source ∧ sameGeneric(y; x).
sameGeneric(x; y) ≡ LookupType(x) = C<vT> ∧ LookupType(y) = C<wU> ∧ |v| = |w|.
LookupType(x) = the declared type of variable x.
isWriteTarget(e) ≡ e is the target (left-hand side) of an assignment.

Figure C.1. Constraint Generation from Method Bodies. Shaded parts show where
uvar constraints differ from the corresponding dvar constraint of the signature-only
analysis.

214

parameters from a overridden/overriding method is not declared with a parametric

type of the same generic. One such example is method argument entry declared on

line 21 from Section 9.2. Changing a use-site annotation in the type of entry would

cause method add of MapEntryWList to no longer override add in WList. When hier-

archyMaybeGeneralized(x) is satisfied, rule MB-Override ensures that each inferred

use-site annotation is the same in each position for all of the overridden/overriding

methods.

Rule MB-AssignToGeneric-Same handles the case when a method argument x is

assigned to another variable y that are both parametric types of the same generic.

Promoting a use-site annotation in the type of x may require promoting the type

of y. Consider again argument source of method addAll on line 7. If the state-

ment “List<E> list2 = source;” was added to the beginning of the method body

of addAll, then changing only the type of source to List<? extends E> would cause

the method to no longer type check; the type of the left-hand side of the assignment,

list2, would no longer be a supertype of the right-hand side, source. The influ-

ence analysis from Section 9.3 would also detect that source’s type influences list2’s

type. To make the upper bounds on uvars less restrictive, we perform a more precise

analysis for generating constraints on uvars.

An expression of the form “y = x.f” does not cause rule MB-AssignToGeneric-

Same to generate a constraint using y’s type even though the influence analysis detects

that x’s type influence y’s type. Instead, rule MB-FieldRead is applied to reflect that

expression “y = x.f” is only a covariant use of the field type of f. In the actual

implementation, rule MB-AssignToGeneric-Same also applies when x is an expression

that has a destination node (Figure 9.3) but x is not a qualifier in the expression.

This handles the case when statement “return x ;” occurs in the body of method

M and other similar cases.

215

Rule MB-AssignToGeneric-Base handles the other assignment case from x to y

when y is declared with a parametric type of a different generic D<wU> than that used

in the type of x, C<vT>, where C 6= D. This can occur when C<vT> <: D<wU>. This sub-

typing relationship may be derived when there exists another instantiation of the base

type, D<v′S′>, such that (1) C<vT> <: D<v′S′> holds not because of variance but instead

by the class hierarchy and (2) C<vT> <: D<v′S′> <: D<wU>. Considering the class “class

Pair<X,Y> extends Box<X> {}” for example, Pair<? extends Dog, String> <: Box<?

extends Dog> <: Box<? extends Animal>. Also, Pair<S,?> <: Box<? extends S> but

Pair<?,T> 6<: Box<? extends S>. More generally, if y is of type Box<vS> and x is

of type Pair<S,T>, generating the most relaxed but safe constraint for the assign-

ment “y = x” requires computing the most general instantiation of Pair that is a

subtype of Box<vS>. Rather than compute such an instantiation of C in rule MB-

AssignToGeneric-Base, we chose to simplify the analysis by restricting the inferred

use-site annotation to its corresponding definition-site variance; this is safe because

definition-site variances support all uses of a generic definition.

216

APPENDIX D

SOUNDNESS OF REFACTORING

This section provides a sketch of a rigorous argument for why our algorithm for

generalizing types with wildcards is sound. There are two important soundness ques-

tions relevant to our refactoring tool. First, are the “correct” wildcard annotations

being generated? That is, will the inferred, more general, types support all of the

original operations available to clients, so that the refactoring will not break any client

code? Second, does the type influence graph record all of the necessary dependencies

between declarations?

The second soundness question can be easily verified for a given language con-

struct. Examining the type checking rule for an assignment expression, for example,

one can verify that generalizing the type of the right-hand side may require gener-

alizing the type of the left-hand side but not the other way around. Effectively, the

type influence graph encodes an overapproximation of the dependencies in our typing

rules, feature-by-feature. Therefore, answering this soundness question formally for

the full Java language would be tedious, error-prone, and would focus on technicali-

ties that do not provide fundamental insight on when code can be generalized with

wildcards. Rather, we provide empirical evidence that our influence analysis is sound

by recompiling the six large libraries of our study after the refactoring was performed.

Given that our influence graph records all of the necessary dependencies, it is safe

to rewrite the types of all declarations in a path in the graph (assuming all declarations

in the path are rewritable). Specifically, rewriting the types of all declarations in the

path preserves the subtype relationships between the types of expressions from the

217

original program. This property is a consequence of Lemma 35, which is stated later

in this section.

To answer the first question, we apply many properties proven in Appendices A

and B, adapted to our refactoring setting. The essence of the proofs can be found in

those appendices, but the precise statements are different, due to the unique elements

of our approach. First, we cannot just refer to definition-site variance, which Java

does not support, but instead emulate it via refactoring-induced use-site variance.

Second, we need to also integrate method body analysis, which we do later, as a

separate step.

Our definition-site variance inference algorithm was proven sound in Appendix A.

This algorithm computes how a new type system, ignoring Java intricacies, can infer

definition-site variance and, thus, generalize method signatures transparently. Subse-

quently, the VarJ calculus (Chapter 6) modeled faithfully a subset of Java that sup-

ports language features with complex interactions with variance, such as F-bounded

polymorphism [13] and wildcard capture. VarJ extends the Java type system with de-

clared (not inferred) definition-site variance and shows that this extension is sound.

Our current system borrows from both of the above formalisms by first inferring

definition-site variance, and then emulating it with use-site variance in a more com-

plete setting, borrowed from VarJ.

The type soundness proof of VarJ requires that subtyping relationships con-

cluded using definition-site variance annotations also satisfy the subsumption princi-

ple, where subtypes can perform the operations available to the supertype. Another

consequence of satisfying that requirement is that the refactored type is not only a

supertype of the original type but it is also safe to assume that the refactored type

is a subtype of the original type. In other words, types that occur in the refactored

program support all of the operations available in the original program; otherwise,

218

the refactored code would not compile because an operation is being performed in

the code that is no longer supported by a refactored type.

The proofs in Appendices A and B ensure that the refactored types are subtypes

of the original types according to the subtype relation with definition-site subtyping.

However, Java does not support definition-site variance, and the subtype relation

as defined in the JLS [28] does not conclude subtype relationships using inferred

definition-site variances. To relate our subtype relation with that of the JLS, we

define another subtype relation <:JLS that is the same as <: except <:JLS does not

support a definition-site subtyping rule. For example, although Iterator is inferred

to be covariant in its type parameter, Iterator<Dog> 6<:JLS Iterator<Animal>. The

following lemma establishes that definition-site variance can be simulated with use-

site variance.

Lemma 30 (Use-site can simulate def-site). If T <: C<vT>, then T <:JLS C<wT>, where

wi = dvar(Xi; C) t vi, for each i ∈ |w|.

This lemma establishes that any additional subtype relationships that hold for <:

but do not hold for <:JLS are a result of definition-site variance inference. Also, a

program still compiles if types are generalized only by joining their use-site annota-

tions with inferred definition-site variances. For example, suppose in a program that

type checks that there is an assignment x = y, where x and y are declared with types

Iterator<Animal> and T, respectively. Since the program type checks, we know T <:

Iterator<Animal>. The refactoring tool may change the type of y to a greater super-

type T′. Since the refactored type is always a subtype of the original type according

to <:, T′ <: T <: Iterator<Animal>. Lemma 30 implies that T′ <:JLS Iterator<?

extends Animal>. So changing the type of x to the latter type ensures the program

still compiles, as far as assignments to x are concerned. In this example, it could have

been the case that T = Iterator<Animal> and T′ = Iterator<? extends Animal>.

219

Although only the types of declarations (e.g., fields) are rewritten by the tool,

we will prove that the types of all expressions in the refactored program can safely

be subtypes of the corresponding types in the original program. This ensures nested

expressions are also able to be perform operations from the original program.

The soundness proof of Theorem 3 guarantees that C<(vutvd)T> <: C<vuT> is safe,

where vd is a safe definition-site variance for C. Considering Iterator is covariant,

for example, this property implies that Iterator<?> <: Iterator<? super Animal> is

safe to conclude. The refactoring tool would replace the latter type with the former.

We state this property formally in the following lemma.

Lemma 31 (Def-site joining does not further generalize). Let C be a generic class such

that CT(C) = “class C<X> ...”. Then C<(w t v)T> <: C<vT>, where wi = dvar(Xi; C),

for each i ∈ |w|.

Additionally, in order for the refactored code to compile, the operations performed

on the original types must also be able to be performed on the refactored types. To

describe this property precisely, first, we assume that there is an auxiliary (partial)

function ftype(f; C<vT>) such that given the name, f, of a field that exists in generic

class C and an instantiation of the generic C<vT>, ftype(f; C<vT>) returns the type of

the field for that instantiation. Also, we assume that there is a (partial) function

mtype(m; C<vT>) such that given the name m of a method that exists in generic class

C and an instantiation of generic C<vT>, mtype(m; C<vT>) returns the type signature

of the method for that instantiation. Formal definitions of ftype and mtype can be

found in Figure 6.4.

Since refactored types are subtypes of original types, showing that operations can

be performed on the refactored types amounts to showing that the subtyping relation

satisfies the subsumption principle. This is established by Lemmas 2 and 3. The

proofs of those lemmas rely on intricate reasoning involving the variances of positions

in class definitions, and the subtype lifting lemma (Lemma 1), which establishes the

220

key relationship between variance and subtyping. We restate those lemmas here since

properties in this appendix are specified using the FGJ* syntax (given in Figure 9.2).

Lemma 32 (Subtyping Specializes Field Type). If T′ <: T and ftype(f; T) = U , then

ftype(f; T′) <: U.

If Lemma 32 were not true, the subtyping relation would violate the subsumption

principle; in that case, the supertype T could return a U from its field f but the subtype

T′ could not.

To satisfy the subsumption principle, a method’s type signature for the subtype

must be a subtype of its type signature for the supertype. Lemma 33 states this

precisely.

Lemma 33 (Subtyping Specializes Method Type). If T′ <: T and mtype(m; T) =

<ZC S> (U) → V, then mtype(m; T′) = <ZC S′> (U′) → V′ such that (1) U <: U′, (2)

S <: S′, and (3) V′ <: V.

To formally argue that the refactoring preserves compilation, we model the refac-

toring tool using the FGJ* syntax and similar notation used in FGJ. Recall that an

FGJ program is a pair (CT, e) of a class table CT that maps class names to class

definitions and an expression e representing the main method. The refactoring tool

is modeled by a function R that maps elements from an FGJ program to elements in

the refactored program (R(CT), e). R is not applied to e because the refactoring tool

does not modify term expressions. It only changes the types of declarations, which

only occur in the class table.

The typing judgment CT ` e : T denotes that expression e has type T given class

table CT.1 The following key theorem is satisfied by the refactoring tool and establishes

that the refactoring preserves compilation.

1The typing judgment in FGJ takes in more parameters such as a type variable context ∆ and
an expression variable context Γ. We skip these parameters because the exact typing rules are not
the focus of this paper.

221

Theorem 6 (Refactored Types Are Safe). Suppose CT ` e : C<vT>, where CT(C) =

“class C<X> . . .”. Then R(CT) ` e : C<v′T>, where for each i ∈ |T|,

v′i v

dvar(Xi; C) t vi t uvar(Xi; C; y),

if e = y and y is a method argument

dvar(Xi; C) t vi, otherwise.

This theorem states that the use-site variances in the type of every expression

in the refactored program are bounded by the join of the use-site variances in the

types in the original program and the corresponding definition-site variances, if the

signature-only based variance analysis is performed. If the method body analysis

is also performed, then expressions that are method arguments may be further pro-

moted by the inferred use-site needed to support only the operations performed in

the method body. The upper bounds of the v′ ensure that every expression can sup-

port the operations performed in the original program. Although it is not safe to

assume C<v′T> <: C<vT> in general, it is safe to assume that subtype relationship for

a particular method.

We will sketch the proof of this theorem. To clarify the presentation, we first prove

the theorem for the case where the refactoring tools performs just the signature-only

analysis. Later, we will cover the case when the method-body analysis is performed.

Also, for simplicity, we ignore the type influence analysis by assuming that all decla-

rations are declared in source, and that the types of all declarations are generalized.

Finally, we assume that the type system exhibits a subsumption typing property: an

expression can be typed with any supertype of its most specific type. Formally, if

e : T and T <:JLS U, then e : U. Assuming this typing rule is safe because we know that

the subtype relation satisfies the subsumption principle. Subsumption typing rules

were defined in both type systems for TameFJ [12] and VarJ. We use relation <:JLS

222

instead of <: because we only want to derive typing judgments that a standard Java

compiler would infer.

Since we are assuming the signature-only analysis, we can define the refactoring

tool function R over all type expressions in a program: R(C<wT>) = C<vT>, where

wi = dvar(Xi; C) t vi and Xi is the ith type parameter of C. Also, R(X) = X, where X is

a type variable. Given this definition, we state two important properties:

Lemma 34 (Refactored Type is Subtype of Original). R(T) <: T.

Lemma 35 (Refactoring Preserves Subtyping). If T <: U, then R(T) <:JLS R(U).

Lemma 34 states that the refactored type is a subtype of the original, and it holds

because of Lemma 31, Lemma 35 establishes that the refactoring preserves subtype

relations from the original program; it is easy to show using Lemmas 31 and 30. We

restate Theorem 6 with the signature-only based refactoring:

Theorem 7 (Refactored Types Are Safe for Sig-Only). If CT ` e : T, then R(CT) `

e : R(T). We prove this by structural induction on expression e.

Case: e = y. Proof : This proof case is trivial. Because every declaration is

generalized, the refactoring tool changes the type of y from T to R(T).

Case: e = new N(e). Proof : In the original program, e has type N. It also has

type N in the refactored program, if it type checks. Furthermore, e would have type

R(N), by the subsumption typing rule, since N <:JLS R(N). So we only need to show

that this expression still type checks in the refactored program. Since new N(e) has

a type, by inversion (similar to [12, Lemma 31]), we know that for each i ∈ |e|, the

actual argument ei also has a type that is a subtype of the type of the ith formal

argument of the constructor for N. We show that this is also the case in the refactored

program.

Let Ti be the type of ei and Ui by the type of the ith formal argument of the

constructor for N. By the inductive hypothesis, R(CT) ` ei : R(Ti). As discussed

223

above, it must be the case that Ti <:JLS Ui. By Lemma 35, this implies R(Ti) <:JLS

R(Ui). Since i was arbitrary in |e|, new N(e) type checks in the refactored program.

Therefore, R(CT) ` new N(e) : N.

Case: e = e′.f. Proof : Since CT ` e′.f : T, then by inversion, we have the

judgments (1) and (2) below:

1. CT ` e′ : U

2. ftype(f; U) <: T

3. R(CT) ` e′ : R(U), by applying the inductive hypothesis to (1).

4. R(U) <: U, by Lemma 34.

5. ftype(f;R(U)) <: ftype(f; U) <: T, by applying Lemma 32 to (4) and (2).

6. ftype(f;R(U)) <:JLS R(T), by applying Lemma 30 to (5).

7. R(CT) ` e′.f : R(T), by (3), (6), and the subsumption typing rule.

Case: e = e′.<S>m(e). Proof : Since CT ` e′.<S>m(e) : T, then by inversion, we

have judgments (1–6) below:

1. CT ` e : U

2. CT ` e′ : U

3. mtype(m; U) = <ZC V> (A)→ B

4. U <: [S/Z]A. 5. S <: [S/Z]V. 6. [S/Z]B <: T.

7. R(CT) ` e′ : R(U), by applying the inductive hypothesis to (2).

8. R(U) <: U, by Lemma 34.

Applying Lemma 33 to (3) and (8) gives the following four judgments:

224

9. mtype(m;R(U)) = <ZC V′> (A′)→ B′

10. A <: A′. 11. V <: V′. 12. B′ <: B.

We use the following standard substitution preserves subtyping lemma that was

proven for many extensions of FGJ.

Lemma 36. If T <: T′, then [U/X]T <: [U/X]T′.

Applying Lemma 36 to (10–12) gives the next three judgments:

13. [S/Z]A <: [S/Z]A′

14. [S/Z]V <: [S/Z]V′

15. [S/Z]B′ <: [S/Z]B

16. R(CT) ` e : R(U), by applying the inductive hypothesis to (1).

17. R(U) <: U, by Lemma 34.

18. R(U) <: U <: [S/Z]A <: [S/Z]A′, by (17), (4), and (13).

19. S <: [S/Z]V <: [S/Z]V′, by (5) and (14).

20. [S/Z]B′ <: [S/Z]B <: T, by (15) and (6).

21. R(U) <:JLS R([S/Z]A′), by applying Lemma 30 to (18).

22. S <:JLS R([S/Z]V′), by applying Lemma 30 to (19).

23. R([S/Z]B′) <:JLS R(T), by applying Lemma 35 to (20).

24. R(CT) ` e′.<S>m(e) : R(T), by (7), (9), (16), (21–23), and the subsumption

typing rule.

225

D.1 Proof of Theorem 6 with Method Body Analysis.

We next sketch the proof of a theorem analogous to Theorem 7 (which specializes

Theorem 6 specifically for the signature-only analysis), for the case of the method

body analysis. Although the proof of Theorem 7 assumed that the signature-only

based analysis was performed, similar reasoning proves the theorem still holds if the

method body analysis is performed. First, for this proof we now reason with a function

Ry(T) that refactors the type T with the method body analysis assuming that it is

the declared type of method argument y:

Ry(T) =

dvar(Xi; C) t vi t uvar(Xi; C; y),

if T = C<vT>, y is a method argument,

and Xi = ith type parameter of C.

R(T), otherwise.

We define another function Rm to model applying the refactoring tool to the entire

class table. Rm(CT) is the same as R(CT) except that when Rm is applied to the type

T of method argument y, Rm returns Ry(T) instead of R(T). Theorem 6 is restated

with the equivalent implication below:

Theorem 8 (Refactored Types Are Safe for Body Analysis). If CT ` e : T, then:

Rm(CT) ` e : Ry(T), if e = y and y is a method argument

Rm(CT) ` e : R(T), otherwise.

Note that this theorem implies that if a method argument y is used as a qualifier

in an expression (e.g., “y.f”), that expression has the same type as in the refactored

program where the signature-only based analysis was performed. Hence, proving this

theorem amounts to showing that each kind of use of a method argument in the

226

original program is still supported in the refactored program. Specifically, we show

the following:

• If y is used in a member access expression (i.e., a field read or a method invo-

cation), then the type of that expression in the refactored program is the same

for both the signature-only based and the method body analysis.

• If y is declared with type T and is being “directly assigned” to a declaration of

type U, then Rm(T) <:JLS R
m(U). Hence, the direct assignment still type checks

in the refactored program. “Directly assigning” y to another declaration refers

to the situation when y is not a qualifier in an expression but that expression has

a destination declaration (node) as discussed in Section 9.3.3. For example, this

occurs when y was directly returned from a method (i.e., “return y;” occurred

in the method body).

In general for a type T of a method argument y, it is not the case that Ry(T) <: T.

However, for the limited use of y in the method body, it is safe to assume that

Ry(T) <: T. We define a new subtype relation where T′ <:y T denotes that for the

limited use of type T by method argument y, T′ is a subtype of T. This assumption is

safe because Lemmas 32 and 33 hold for the subset of members accessed by y in the

method body. In the statements of those two lemmas, we can replace the subtype

T′ with Ry(T) and those lemmas would still hold for the particular members accessed

by y. Considering method argument source from line 7 of Figure 9.1, for example,

even though List is invariant, we have Rsource(List<E>) = List<? extends E> <:source

List<E>. The only member accessed from source in the method body is iterator().

Lemma 33 holds with the instantiations T′ = List<? extends E>, T = List<E>, and

m = iterator.

Contrasting with Lemma 35, in general we cannot establish the implication T <:

U =⇒ Rm(T) <:JLS Rm(U) if T is the type of a method argument y. However, if

227

T <:JLS U holds in the original program because y was directly assigned to another

variable of type U, then rules MB-AssignToGeneric-Same and MB-AssignToGeneric-

Base from Figure C.1 guarantee Rm(T) <:JLS R
m(U). For example, if Rm(T) = C<vT>

and Rm(U) = C<wT>, rule MB-AssignToGeneric-Same ensures v ≤ w. Moreover, if an

arbitrarily complex expression e of type T occurs where an expression of type U is

expected, then the implication T <:JLS U =⇒ Rm(T) <:JLS R
m(U) holds.

Given the properties above, each kind of use of a method argument is still sup-

ported in the refactored program. Furthermore, the argument above describes how

to augment the proof of Theorem 7 to prove Theorem 8. For example, in the proof of

Theorem 7, for the case when e = new N(e), for each i ∈ |e|, we have Ti <:JLS Ui, where

Ti is the type of the actual argument ei and Ui is the type of the ith formal argument

of the constructor for N. Since ei was directly assigned to the ith formal argument,

Rm(Ti) <:JLS R
m(Ui). Hence, the proof of this theorem for the case when e = new

N(e) still holds. Augmenting the remainder of the proof is similarly straightforward.

228

BIBLIOGRAPHY

[1] Altidor, John, Huang, Shan Shan, and Smaragdakis, Yannis. Taming the wild-
cards: Combining definition- and use-site variance. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (New York, NY, USA, 2011), PLDI ’11, ACM, pp. 602–613.

[2] Altidor, John, Reichenbach, Christoph, and Smaragdakis, Yannis. Java wildcards
meet definition-site variance. In Proceedings of the 26th European Conference on
Object-Oriented Programming (Berlin, Heidelberg, 2012), ECOOP’12, Springer-
Verlag, pp. 509–534.

[3] Altidor, John, and Smaragdakis, Yannis. Refactoring java generics by inferring
wildcards, in practice. In Proceedings of Conf. on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA) (Portland, OR, Oct. 2014),
ACM.

[4] America, Pierre, and van der Linden, Frank. A parallel object-oriented language
with inheritance and subtyping. In European Conf. on Object-Oriented Program-
ming and Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA/ECOOP) (New York, NY, USA, 1990), ACM, pp. 161–168.

[5] Apache Software Foundation. Apache commons-collections library. http://

larvalabs.com/collections/. Version 4.01.

[6] Aydemir, Brian, Charguéraud, Arthur, Pierce, Benjamin C., Pollack, Randy,
and Weirich, Stephanie. Engineering formal metatheory. In Proceedings of the
35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (New York, NY, USA, 2008), POPL ’08, ACM, pp. 3–15.

[7] Barendregt, Henk P. The Lambda Calculus: Its Syntax and Semantics, vol. 103
of Studies in Logic and the Foundations of Mathematics. North Holland, Ams-
terdam, 1984.

[8] Bloch, Joshua. The closures controversy. http://www.javac.info/

bloch-closures-controversy.ppt. Accessed Dec. 2013.

[9] Bloch, Joshua. Effective Java (2nd Edition) (The Java Series), 2nd ed. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2008.

[10] Boumillion, Kevin, and Levy, Jared. Guava: Google core libraries for Java 1.5+.
http://code.google.com/p/guava-libraries/. Release 8.

229

http://larvalabs.com/collections/
http://larvalabs.com/collections/
http://www.javac.info/bloch-closures-controversy.ppt
http://www.javac.info/bloch-closures-controversy.ppt
http://code.google.com/p/guava-libraries/

[11] Bracha, Gilad, and Griswold, David. Strongtalk: typechecking smalltalk in a
production environment. In Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA) (New York, NY, USA, 1993), ACM, pp. 215–230.

[12] Cameron, Nicholas, Drossopoulou, Sophia, and Ernst, Erik. A model for Java
with wildcards. In European Conf. on Object-Oriented Programming (ECOOP)
(2008), Springer, pp. 2–26.

[13] Canning, Peter, Cook, William, Hill, Walter, Olthoff, Walter, and Mitchell,
John C. F-bounded polymorphism for object-oriented programming. In Proceed-
ings of the Fourth International Conference on Functional Programming Lan-
guages and Computer Architecture (New York, NY, USA, 1989), FPCA ’89,
ACM, pp. 273–280.

[14] Cardelli, L. Structural subtyping and the notion of power type. In Proceedings
of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (New York, NY, USA, 1988), POPL ’88, ACM, pp. 70–79.

[15] Chin, Wei-Ngan, Craciun, Florin, Khoo, Siau-Cheng, and Popeea, Corneliu. A
flow-based approach for variant parametric types. In Proceedings of Conf. on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA)
(New York, NY, USA, 2006), OOPSLA ’06, ACM, pp. 273–290.

[16] Chlipala, Adam. Certified Programming with Dependent Types: A Pragmatic
Introduction to the Coq Proof Assistant. The MIT Press, 2013.

[17] Cimadamore, Maurizio, and Viroli, Mirko. Reifying wildcards in java using the
ego approach. In Proceedings of the 2007 ACM Symposium on Applied Computing
(New York, NY, USA, 2007), SAC ’07, ACM, pp. 1315–1322.

[18] Cook, William. A proposal for making Eiffel type-safe. In European Conf. on
Object-Oriented Programming (ECOOP) (Cambridge, UK, 1989), Cambridge
University Press, pp. 57–70.

[19] Cook, William R. Object-oriented programming versus abstract data types. In
Proceedings of the REX School/Workshop on Foundations of Object-Oriented
Languages (London, UK, UK, 1991), Springer-Verlag, pp. 151–178.

[20] Cousineau, Guy, and Mauny, Michel. The Functional Approach to Programming.
Cambridge University Press, 1998.

[21] Craciun, Florin, Chin, Wei-Ngan, He, Guanhua, and Qin, Shengchao. An
interval-based inference of variant parametric types. In Proceedings of the
18th European Symposium on Programming (ESOP) (Berlin, Heidelberg, 2009),
ESOP ’09, Springer-Verlag, pp. 112–127.

[22] Dautelle, Jean-Marie, et al. Jscience. http://jscience.org/. Version 4.3.

230

http://jscience.org/

[23] Dautelle, Jean-Marie, and Keil, Werner. Jsr-275: Measures and units. http:

//www.jcp.org/en/jsr/detail?id=275. Accessed Nov. 2010.

[24] Emir, Burak, Kennedy, Andrew, Russo, Claudio, and Yu, Dachuan. Variance
and generalized constraints for c# generics. In Proceedings of the 20th Euro-
pean Conference on Object-Oriented Programming (Berlin, Heidelberg, 2006),
ECOOP’06, Springer-Verlag, pp. 279–303.

[25] Friedman, Eric, and Eden, Rob. Gnu Trove: High-performance collections library
for Java. http://trove4j.sourceforge.net/. Version 2.1.0.

[26] Gödel, Kurt. On Formally Undecidable Propositions of Principia Mathematica
and Related Systems. Dover Books on Mathematics. Dover Publications, 2012.

[27] Goldberg, Adele, and Robson, David. Smalltalk-80: The Language and Its Imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1983.

[28] Gosling, James, Joy, Bill, Steele, Guy, Bracha, Gilad, and Buckley, Alex. The
Java Language Specification, 7th ed. Addison-Wesley Professional, California,
USA, February 2012.

[29] Greenman, Ben, Muehlboeck, Fabian, and Tate, Ross. Getting f-bounded poly-
morphism into shape. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (New York, NY, USA,
2014), PLDI ’14, ACM, pp. 89–99.

[30] Harper, Robert. Practical Foundations for Programming Languages. Cambridge
University Press, Dec. 2012.

[31] Hejlsberg, Anders, Wiltamuth, Scott, and Golde, Peter. C# Language Specifi-
cation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 2003.

[32] Igarashi, Atsushi, Pierce, Benjamin C., and Wadler, Philip. Featherweight Java:
A minimal core calculus for Java and GJ. ACM Trans. Program. Lang. Syst. 23,
3 (May 2001), 396–450.

[33] Igarashi, Atsushi, and Viroli, Mirko. On variance-based subtyping for parametric
types. In Proceedings of the 16th European Conference on Object-Oriented Pro-
gramming (London, UK, UK, 2002), ECOOP ’02, Springer-Verlag, pp. 441–469.

[34] Igarashi, Atsushi, and Viroli, Mirko. Variant parametric types: A flexible sub-
typing scheme for generics. ACM Trans. Program. Lang. Syst. 28, 5 (Sept. 2006),
795–847.

[35] Igarashi, Atsushi, and Viroli, Mirko. Variant path types for scalable extensibil-
ity. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-
oriented Programming Systems and Applications (New York, NY, USA, 2007),
OOPSLA ’07, ACM, pp. 113–132.

231

http://www.jcp.org/en/jsr/detail?id=275
http://www.jcp.org/en/jsr/detail?id=275
http://trove4j.sourceforge.net/

[36] International, Ecma. Dart Programming Language Specification Version 1.3,
1st ed. Ecma International, Mar. 2014.

[37] ISO Standards Committee. ISO/IEC standard 14882: Programming languages
– C++, 1998.

[38] Jones, Simon P. Haskell 98 Language and Libraries: The Revised Report. Cam-
bridge University Press, May 2003.

[39] Kennedy, Andrew, and Pierce, Benjamin. On decidability of nominal subtyping
with variance. FOOL/WOOD (2007).

[40] Kennedy, Andrew, and Syme, Don. Transposing f to c#: expressivity of para-
metric polymorphism in an object-oriented language: Research articles. Concurr.
Comput. : Pract. Exper. 16 (June 2004), 707–733.

[41] Kiezun, Adam, Ernst, Michael D., Tip, Frank, and Fuhrer, Robert M. Refac-
toring for parameterizing Java classes. In Proceedings of the 29th International
Conference on Software Engineering (Washington, DC, USA, 2007), ICSE ’07,
IEEE Computer Society, pp. 437–446.

[42] Malayeri, Donna, and Aldrich, Jonathan. Integrating nominal and structural
subtyping. In Proceedings of the 22nd European Conference on Object-Oriented
Programming (Berlin, Heidelberg, 2008), ECOOP ’08, Springer-Verlag, pp. 260–
284.

[43] Marlow, Simon. Haskell 2010 language report, 2010.

[44] Martin-Löf, P. Constructive mathematics and computer programming. In Proc.
Of a Discussion Meeting of the Royal Society of London on Mathematical Logic
and Programming Languages (Upper Saddle River, NJ, USA, 1985), Prentice-
Hall, Inc., pp. 167–184.

[45] The Coq development team. The Coq proof assistant reference manual. LogiCal
Project, 2004. Version 8.0.

[46] Meyer, Bertrand. Object-Oriented Software Construction, 1st ed. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[47] Milner, Robin, Tofte, Mads, and Macqueen, David. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1997.

[48] Mozilla. Definition-site variance inference in rust. http://static.rust-lang.

org/doc/0.9/rustc/middle/typeck/variance/index.html. Accessed Aug.
2014.

[49] Mozilla. The rust reference manual. http://doc.rust-lang.org/rust.html.

232

http://static.rust-lang.org/doc/0.9/rustc/middle/typeck/variance/index.html
http://static.rust-lang.org/doc/0.9/rustc/middle/typeck/variance/index.html
http://doc.rust-lang.org/rust.html

[50] Nipkow, Tobias, Wenzel, Markus, and Paulson, Lawrence C. Isabelle/HOL:
A Proof Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg,
2002.

[51] Odersky, Martin. The Scala Language Specification v 2.9. http://www.

scala-lang.org/docu/files/ScalaReference.pdf, 2014.

[52] Pfenning, F., and Elliot, C. Higher-order abstract syntax. In Proceedings of
the ACM SIGPLAN 1988 Conference on Programming Language Design and
Implementation (New York, NY, USA, 1988), PLDI ’88, ACM, pp. 199–208.

[53] Pierce, Benjamin C. Types and Programming Languages. MIT Press, Cambridge,
MA, USA, 2002.

[54] Reynolds, John C. User-defined types and procedural data structures as com-
plementary approaches to data abstraction. In Conference on New Directions
on Algorithmic Languages (Munich, Aug. 1975), Stephen A. Schuman, IFIP WP
2.1.

[55] Robbes, Romain, Röthlisberger, David, and Tanter, Éric. Extensions during soft-
ware evolution: Do objects meet their promise? In Proceedings of the 26th Eu-
ropean Conference on Object-Oriented Programming (Berlin, Heidelberg, 2012),
ECOOP’12, Springer-Verlag, pp. 28–52.

[56] Salcianu, Alex. Java program analysis utilities library. http://jpaul.

sourceforge.net/. Version 2.5.1.

[57] Schürmann, Carsten. The twelf proof assistant. In Proceedings of the 22nd
International Conference on Theorem Proving in Higher Order Logics (Berlin,
Heidelberg, 2009), TPHOLs ’09, Springer-Verlag, pp. 79–83.

[58] Smith, Daniel. Jep draft: Improved variance for generic classes and interfaces.
http://openjdk.java.net/jeps/8043488.

[59] Smith, Daniel, and Cartwright, Robert. Java type inference is broken: can we
fix it? In Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA) (New York, NY, USA, 2008), ACM, pp. 505–524.

[60] Squeaksource. Squeaksource repository. http://www.squeaksource.com/.

[61] Tate, Ross, Leung, Alan, and Lerner, Sorin. Taming wildcards in java’s type
system. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY, USA, 2011), PLDI ’11,
ACM, pp. 614–627.

[62] Thorup, Kresten Krab, and Torgersen, Mads. Unifying genericity: Combining
the benefits of virtual types and parameterized classes. In European Conf. on
Object-Oriented Programming (ECOOP) (London, UK, 1999), Springer-Verlag,
pp. 186–204.

233

http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://jpaul.sourceforge.net/
http://jpaul.sourceforge.net/
http://openjdk.java.net/jeps/8043488
http://www.squeaksource.com/

[63] Torgersen, Mads, Hansen, Christian Plesner, Ernst, Erik, von der Ahe, Peter,
Bracha, Gilad, and Gafter, Neal. Adding wildcards to the Java programming
language. In SAC ’04: Proc. of the 2004 Symposium on Applied Computing
(Nicosia, Cyprus, 2004), ACM Press, pp. 1289–1296.

[64] Urban, Christian, Berghofer, Stefan, and Norrish, Michael. Barendregt’s variable
convention in rule inductions. In In Proc. of the 21th International Conference on
Automated Deduction (CADE), volume 4603 of LNAI (2007), Springer, pp. 35–
50.

[65] Viroli, Mirko, and Rimassa, Giovanni. On access restriction with Java wildcards.
Journal of Object Technology 4, 10 (Dec. 2005), 117–139.

[66] Wadler, Philip. The expression problem. Email, Nov. 1998. Discussion on the
Java Genericity mailing list.

234

	Acknowledgments
	Abstract
	List of Figures
	Introduction
	Subtype Polymorphism
	Parametric Polymorphism
	Variance Introduction
	Illustration of Approach
	Dissertation Outline

	Background on Variance
	Definition-site Variance
	Use-site Variance
	A Comparison
	Generalizing the Design Space

	Reasoning about Variance
	Variance Composition
	Integration of Use-Site Variance
	A Note on Scala:

	Recursive Variances
	Recursive Variance Type 1
	Recursive Variance Type 2
	Recursive Variance Type 3
	Recursive Variance Type 4
	Handling Recursive Variance
	A Note on Scala:

	VarLang: A Core Language and Calculus
	Syntax
	VarLang Translation
	Example

	Revisiting Recursive Type Variances
	Constraint Solving

	Towards Industrial Strength Languages
	Realistic Complications
	Generic Methods
	Contrasting Use-Site Variance and Generic Methods

	Existential Types
	Expressible But Not Denotable Types
	Scope of Wildcards
	Wildcard Capture

	F-bounded polymorphism

	VarJ
	VarJ Syntax
	Variance of a Type
	Variance of a Position
	Subtyping
	Typing and Wildcard Capture
	Expression Typing
	Matching for Wildcard Capture
	Sifting for Wildcard Capture

	Type Soundness
	Discussion
	Boundary Analysis
	F-Bounds in Existential Types

	Definition-Site Variance and Erasure

	Variance Soundness
	Proving Subsumption in VarJ
	High-Level Proof of Lemma 2
	Supporting Field Writes

	An Application: Definition-Site Variance Inference for Java
	Applications
	Analysis of Impact
	Backward Compatibility and Discussion

	Refactoring by Inferring Wildcards
	Contributions Relative to Past Work
	Illustration
	Type Influence Flow Analysis
	Influence Nodes
	Flow Dependencies from Qualifiers
	Expression Targets
	Dependencies from Inheritance
	Algorithm
	Non-rewritable Overrides

	Method Body Analysis
	Type Influence Graph Optimizations
	Evaluation
	Comparison to Related Work

	Related Work
	Related Research on Variance
	Operations Available to a Variant Type

	Variance and Programming Language Research
	Nominal Subtyping and Structural Subtyping
	Nominal Subtyping and Software Extension
	Functional Languages
	New Data Types vs. New Operations, In Practice

	Generalized Constraints with Existential Types
	Deconstructing Generalized Constraints
	Deconstructing Existential Subtyping
	Boundary Analysis and Deconstructing Constraints

	Proofs of Language Properties
	Mechanized Proofs

	Barendregt's Variable Convention

	Conclusion
	Summary of Contributions
	Future Work

	VarLang Soundness
	Proof of VarJ Soundness
	Method Body Analysis: Constraints on Use-Site Annotations
	Soundness of Refactoring
	Proof of Theorem 6 with Method Body Analysis.

	Bibliography

